

Modern Linux Tools for Oracle

Troubleshooting

Luca Canali, CERN

Zbigniew Baranowski, CERN

UKOUG TECH14, Liverpool, December 2014

About Luca

• Senior DBA and team lead at CERN IT

• Joined CERN in 2005

• Working with Oracle RDBMS since 2000

• Passionate to learn and share knowledge, how

to get most value from database technology

• @LucaCanaliDB and http://cern.ch/canali

3

About CERN
• CERN - European Laboratory for Particle Physics

• Founded in 1954 by 12 countries for fundamental physics research

in a post-war Europe

• Today 21 member states + world-wide collaborations

• About ~1000 MCHF yearly budget

• 2’300 CERN personnel + 10’000 users from 110 countries

LHC is the world’s largest particle

accelerator

• LHC = Large Hadron Collider

• 27km ring of superconducting magnets

• Currently undergoing upgrades, restart in 2015

Click to edit Master title style

From particle

to article..

How do you get

from this

to this

This talk covers Linux tools for

advanced tracing and Oracle

investigations

• Modern tools opening new roads: Perf,
DTrace, Systemtap, …
• Probes on the OS to understand system calls

• Probes for the userspace to understand
Oracle internals

• This is a short exploration rather than a
lesson

• Focus on techniques that you can use
today

8

Prerequisites

• Not covered here are many of the common and

most used tools and utilities

• top

• strace

• vmstat

• iostat, sar, collectl, dstat

• use of the /proc filesystem (ex cat /proc/meminfo)

• …

9

You can probably run userspace and

dynamic tracing tools in Linux already

• Available with RHEL/OEL 6 or higher

• You gain:

• Tools for advanced troubleshooting

• Insights in the working of Oracle and OS

10

Do I need dynamic tracing when I

have Oracle wait events?

• Data beyond wait events

• Instrument the latency details of ‘on CPU’ time

• Many Oracle wait events don’t provide good

measurements of I/O latency

• Wait event data + user space tracing + OS

tracing = new insights

11

About Zbigniew

• since 2009 at CERN

• Developer

• Researcher

• DBA

• DBA with > 5 years of experience

• Already presented twice at UKOUG

• about Streams and GoldenGate

• Enterprise Manager

• OS

• Execution plan

Long Running Query -> on CPU?

Snapper Can Help

PL/SQL?

Reading

from db

cache

Wait event interface not

much useful in this case

SQL Monitor
• Buffer gets

• PL/SQL almost all the time

• 100% activity on the hash join

• Can we get more? Lets try with perf

Perf

• Linux profiler tool for

• performance counters (PCL)

• events observer (LPE)

• Integrated into the kernel

• Available for kernel versions >= 2.6.31 (RHEL6)

• Safe to use on production systems

Live view of top active functions
perf top [-p <pid of process>]

What are those Oracle functions?

• Complete description of the functions called by
Oracle with is not officially published, but…

• Google it or just guess ;)

• Backups of some MOS notes can be handy
• "ORA-600 Lookup Error Categories” (formerly

175982.1)

• For actions which are part of query execution
• http://blog.tanelpoder.com/files/scripts/tools/unix/os_e

xplain by Tanel Poder

http://blog.tanelpoder.com/files/scripts/tools/unix/os_explain

What have we learned so far?

• Our sql is running some arithmetic operations:

• function lnxdiv (38%) => division

• function lnxadd (10%) => addition

• function lnxmul (9%) => multiplication

• Is it all the time like that?

• Why (by whom) they are called?

Recording Samples with Perf

• Function currently being executed sampling

• Full stack sampling

• Be careful with the sampling frequency

• 99Hz is reasonable

• Samples are recorded to a binary file ‘perf.data’

perf record [-p <pid of process>] [-F <frequency>]

perf record –g -p <pid of process> [-F <frequency>]

Displaying Recoded Data
• In human readable format (same as top)
perf report

Displaying Recorded Stacks

• Tree format

perf report --stdio

Not easy to read!

There is a way of making

stack samples easier to

read…

Flame Graphs
• Visualization of stack samples

• Author: http://www.brendangregg.com/

http://www.brendangregg.com/

How to create a flame graph

1. Collect stack samples of our process under investigation

• 99Hz is a reasonable sampling frequency

2. Dumpstack traces in a text file

perf script >myperf_script.txt

3. Get scripts: https://github.com/brendangregg/FlameGraph

4. Create a flame graph

grep -v 'cycles:' myperf_script.txt|

../FlameGraph-master/stackcollapse-perf.pl |

../FlameGraph-master/flamegraph.pl --title "Flame Graph:”

perf script > myperf_script.txt

grep -v 'cycles:' myperf_script.txt|

../FlameGraph-master/stackcollapse-perf.pl |

../FlameGraph-master/flamegraph.pl --title ”My graph”

perf record -a -g –F99 -p <pid of process>

https://github.com/brendangregg/FlameGraph

Flame Graph for our SQL
• Is called lnxdiv in at least 2 different places

PLSQL_RUN

FG for Oracle Operations

4a) Extract sed commands from os_explain script

(by Tanel Poder)

4b) Create the flame graph using os_explain

mapping

\

wget http://blog.tanelpoder.com/files/scripts/tools/unix/os_explain

grep "s\/q" os_explain > os_explain.sed

grep -v 'cycles:' myperf_script.txt|

sed -f os_explain.sed|

../FlameGraph-master/stackcollapse-perf.pl |

../FlameGraph-master/flamegraph.pl --title ”My FG" >Figure1.svg

Flame Graph for our SQL

4. Table access by

rowid

6. Full TS

2. Hash Group by
1. Sort order by

3b. Hash Join

PLSQL_RUNPLSQL_RUN

3. Hash Join

FG for an Execution Plan

• Create flame graph for query execution operations only:

grep -i -e qer -e opifch -e ^$ myperf_script.txt|

sed -f os_explain.sed|

../FlameGraph-master/stackcollapse-perf.pl|

../FlameGraph-master/flamegraph.pl --title "Flame Graph Rowsource:

my select" >Figure2.svg

What was the join condition of the query?

• compute(range_scan.VALUE_NUMBER,1000)

= compute(full_table.VALUE_NUMBER,100)

create function compute(val in number,j number) return varchar2

as

ret number:=0;

begin

FOR i IN 1..j loop

ret:=ret + mod(val * i,100) / i;

end loop;

return ret;

end;

FG for Server Profiling

• Entire server workload captured from 20 sec

Perf & Flame Graphs: Summary

• Perf

• user space exploration

• available >RHEL 6

• there other useful features (events tracing and probes)

• Flame graph

• call stack visualization

• Perf + flame graph

• Performance investigation

• When wait-event interface does not deliver relevant

information – CPU intensive processing

Advanced Tracing for Linux

• Solaris has DTrace since 2005, Linux is

catching up

• Currently many tools available
• Oracle Linux DTrace, Dtrace4linux, SystemTap,

perf_events, ftrace, ktap, LTTng, eBPF, sysdig

• Most of them still in development

32

DTrace and Linux

• DTrace license is CDDL, incompatible with GPL

• There are 2 ports of DTrace for Linux

• Both still in active development

• Oracle’s port for OEL (for ULN subscribers)

• Notably it does not yet have userspace tracing with the

‘pid provider’

• ‘dtrace4linux’: a one-person effort

• unstable but with more functionality

33

How to Measure Latency with

Dynamic Tracing

The main ingredients:

• Trigger execution probe at the start of a system

call (or a users function)

• Run a probe at the return from the call

• Measure the elapsed time

• Aggregate data in a latency histogram

34

An Example with DTrace

• Measure latency histogram of pread64 calls

• Note: IOPS and latency of random reads very

important for troubleshooting OLTP performance

35

dtrace -n '

syscall::pread64:entry { self->s = timestamp; }

syscall::pread64:return /self->s/ {

@pread["ns"] = quantize(timestamp -self->s);

self->s = 0;

}

tick-10s {

printa(@pread);

trunc(@pread);

}'

SystemTap

• Backed by Red Hat, started in 2005

• Version 1.0 in 2009

• Works by compiling and loading kernel modules

• Scripting language similar to C, allows adding C
extensions

• Easy to start working with it:

• Look at example probes and build from there

• Many similarities between DTrace and SystemTap
probes

36

SystemTap Userspace Probes

• Probes into executable processes (userspace)

• Read function arguments

• Read from process memory (ex: SGA and PGA)

• Linux support

• UTRACE -> available with SystemTap also in
RHEL6

• UPROBES -> replace UTRACE for kernel version
from 3.5, available with SystemTap and more tools

• Dtrace4linux can also do userspace tracing

37

How to check if userspace tracing is

available/active on your system

• This is how to check if UTRACE

extensions are configured:

• This is how to check if UPROBES are

available:

38

grep CONFIG_UTRACE /boot/config-`uname -r`

CONFIG_UTRACE=y

grep CONFIG_UPROB /boot/config-`uname -r`

CONFIG_UPROBES=y

CONFIG_UPROBE_EVENT=y

Key functions to probe the Oracle

wait event interface
Function

name
Purpose Selected parameters

KSKTHBWT

Kernel Service Kompile Thread Begin

Wait.

This function is called at the start of an

Oracle wait event.

The suffix “bwt" most likely stands for

“begin wait".

kslwtbctx is its parent function call and

marks the start of a wait event.

register r13 -> points into

X$KSUSE (V$SESSION) SGA

segmented array

register rsi -> timestamp of the

beginning of the wait (in

microseconds)

register rdx -> wait event number

KSKTHEWT

Kernel Service Kompile Thread End Wait.

This function is called at the end of an

Oracle wait event.

The suffix "ewt" most likely stands for "end

wait".

kslwtectx is its parent function call marking

the end of a wait event.

register r13 -> points into

X$KSUSE (V$SESSION) SGA

segmented array

register rdi -> timestamp of the

beginning of the wait (in

microseconds)

register rsi -> wait event number
39

Systemtap can read from the Oracle

wait event interface

Example: how to write a probe tracing the

beginning of each wait event:

40

probe process("oracle").function("kskthbwt") {

xksuse = register("r13")-3928 # offset for 12.1.0.2

ksusenum = user_uint16(xksuse + 1704)

printf("DB WAIT EVENT BEGIN: timestamp_ora=%ld,

pid=%d, sid=%d, event#=%u\n", register("rsi"), pid(),

ksusenum, register("rdx"))

}

How to read X$KSUSE from SGA

• X$KSUSE -> underlying table of V$SESSION

• It’s a segmented array

• Base of the array record: from CPU register R13

• With offset that is version-dependent

• The column offsets (record values) are available by

querying X$KQFCO and X$KQFTA

• Records contain info on: userid, sql_hash, wait elapsed

time, …

41

Example: How to collect wait event

histograms with microsec resolution

• V$EVENT_HISTOGRAM useful to study latency

• However only milisec precision, a problem when studying

SSD latency

• Note 12.1.0.2 has V$EVENT_HISTOGRAM_MICRO

• Solution: userspace tracing of Oracle processes

• Provides way to collect and display microsec-precision

histograms for all Oracle versions

• Capture event# and wait time in microseconds

• Collect data in a SystemTap aggregate

• Print output as a histogram

42

Example of wait event histograms

collected with SystemTap

43

stap –v histograms_oracle_events_11204.stp -x <pid>

Note: omit –x to trace all oracle processes

Histogram of db file sequential read waits in microseconds (us):

value |-- count

128 |@ 33

256 |@@@ 60

512 |@@@ 61

1024 |@@@@ 93

2048 |@@@@@@@@@@@@@ 260

4096 |@@@ 951

8192 |@@@@@@@@@@@@@@@@@@@@@@@@@@ 538

16384 |@@ 47

32768 |@@@ 71

65536 |@ 34

131072 |@@@@@@@ 153

262144 |@@@ 62

524288 | 16

SystemTap Probes for Oracle Logical

and Physical I/O
Identify the Oracle internal functions of interest:

44

Function Description

kcbgtcr Kernel Cache Buffers Get Consistent Read

Used for consistent reads

kcbgcur Kernel Cache Buffers Current Read

Used for current reads

kcbzib kcbZIB should stand for: Z (kcbz.o is a module for physical IO

helper functions), IB: Input Buffer

Oracle will perform physical read(s) into the buffer cache

kcbzgb The suffix GB in kcbZGB should stand for: Get (space for)

Buffer. Oracle allocates space in the buffer cache for a given

block (typically before I/O operations).

kcbzvb Invoked after Oracle has performed I/O to read a given block

Note: this function is used both for reads in the buffer cache

and for direct reads

Find the key function call parameters

and their meaning

• Identify the function parameters of interest

(block number, file number, etc)

• Example for kcbgtcr and kcbgcur

45

tbs# = user_int32(%rdi)

rel file n# = user_int32(%rdi+4) >> 22 & 0x003FFFFF

block# = user_int32(%rdi+4) & 0x003FFFFF

data_object_id# = user_int32(%rdi+8)

object_id# = user_int32(%rdi+12)

Note: for bigfile tablespaces: block# = user_int32(%rdi+4)

Putting it all together: Trace wait

events + logical and physical I/O

• Provide insights on how Oracle does the I/O

• What are the I/O-related wait events really

measuring?

• Can we rely on the measurements of wait elapsed

time to understand I/O latency?

• Trace:

46

stap –v

trace_oracle_logicalio_wait_events_physicalio_12102.stp

-x <pid> | sed –f eventsname.sed

Example of tracing ‘db file sequential

read’ wait event

47

==========

DB LOGICAL IO Consistent Read (kcbgtcr) for block: tbs#=7, rfile#=0, block#=2505675,

obj#=32174

->kcbzib, Oracle logical read operations require physical reads into the buffer

cache

-> kcbzgb, Oracle has allocated buffer cache space for block: tbs#=7, rfile#=0,

block#=2505675, obj#=32174

==========

DB WAIT EVENT BEGIN: timestamp_ora=498893930487, pid=15559, sid=21, event=db file

sequential read

OS: ->pread: timestamp=498893930555, program=oracle_15559_or, pid=15559, fd=264,

offset=83048882176, count(bytes)=8192

OS: ->ioblock.request, timestamp=498893930588, pid=15559, devname=sdl,

sector=162204848, size=8192, rw=0, address_bio=18446612144946364800

OS: <-ioblock.end, timestamp=498893934550, pid=0, devname=sdl, sector=162204864,

rw=0, address_bio=18446612144946364800

OS: <-pread: timestamp=498893934592, program=oracle_15559_or, local_clock_us(),

pid=15559, return(bytes)=8192

DB WAIT EVENT END: timestamp_ora=498893934633, pid=15559, sid=21, name=SYSTEM,

event=db file sequential read, p1=7, p2=2505675, p3=1, wait_time=4146, obj=32172,

sql_hash=964615745

==========

->kcbzvb, Oracle has performed I/O on: file#=7, block#=2505675, rfile#=0

==========

What the trace shows about ‘db file

sequential read’

• Oracle starts with a logical I/O

• If the block is not in the buffer cache a physical
read is initiated
• A block in the buffer cache is allocated

• The wait event db file sequential read is started

• Oracle calls pread to read 8KB
• This passed on to the block I/O interface

• After the read is done, the wait event ends

• Comment on the wait time: db file sequential read
is dominated by synchronous I/O wait time

48

The Case of Direct Reads and

Tracing Oracle Asynchronous I/O

• Asynchronous I/O is used by Oracle to optimize I/O

throughput

• OS calls used: IO_SUBMIT and IO_GETEVENTS

• We consider the case of ASM on block devices

• Findings:

• Oracle can perform reads that are not instrumented by

the wait event interface

• The wait event ‘direct path read’, does not instrument all

the reads

• The wait event elapsed time is not the I/O latency

49

The case of direct reads and

asynchronous I/O

50

==========

OS: ->io_submit: timestamp=769804010693, program=oracle_18346_or, pid=18346, nr(num I/O)=1

1: file descriptor=258, offset=93460627456, bytes=1048576, opcode=0

OS: <-io_submit: timestamp=769804010897, program=oracle_18346_or, pid=18346, return(num I/O)=1

….many more io_submit and also io_getevents..

==========

DB WAIT EVENT BEGIN: timestamp_ora=769804024008, pid=18346, sid=250, event#=direct path read

LIBAIO:->io_getevents_0_4: timestamp=769804024035, program=oracle_18346_or, pid=18346, min_nr=1,

timeout.tv_sec=600

OS: ->io_getevents: timestamp=769804024060, program=oracle_18346_or, pid=18346, min_nr=1,

timeout={.tv_sec=600, .tv_nsec=0}

OS: <-io_getevents: timestamp=769804028511, program=oracle_18346_or, pid=18346, return(num I/O)=4

0:, fildes=260, offset=79065776128, bytes=1048576

1:, fildes=261, offset=89295683584, bytes=1048576

2:, fildes=263, offset=84572897280, bytes=1048576

3:, fildes=262, offset=94479843328, bytes=1048576

LIBAIO:->io_getevents_0_4: timestamp=769804028567, program=oracle_18346_or, pid=18346, min_nr=1,

timeout.tv_sec=600

OS: ->io_getevents: timestamp=769804028567, program=oracle_18346_or, pid=18346, min_nr=1,

timeout={.tv_sec=600, .tv_nsec=0}

OS: <-io_getevents: timestamp=769804034142, program=oracle_18346_or, pid=18346, return(num I/O)=1

0:, fildes=264, offset=83009470464, bytes=1048576

LIBAIO:->io_getevents_0_4: timestamp=769804034797, program=oracle_18346_or, pid=18346, min_nr=1,

timeout.tv_sec=600

OS: ->io_getevents: timestamp=769804034834, program=oracle_18346_or, pid=18346, min_nr=1,

timeout={.tv_sec=600, .tv_nsec=0}

OS: <-io_getevents: timestamp=769804037359, program=oracle_18346_or, pid=18346, return(num I/O)=4

0:, fildes=265, offset=93436510208, bytes=1048576

1:, fildes=267, offset=89061851136, bytes=1048576

2:, fildes=269, offset=78286684160, bytes=1048576

3:, fildes=268, offset=83802259456, bytes=983040

DB WAIT EVENT END: timestamp_ora=769804037433, pid=18346, sid=250, name=SYSTEM, event#=direct

path read, p1=7, p2=4324864, p3=128, wait_time

=13425, obj=32176, sql_hash=1782650121

==========

Oracle wait events for asynchronous

I/O cannot be used to study latency

Example of how to measure I/O latency from the block

I/O interface using SystemTap:

51

global latencyTimes, requestTime[10000]

probe ioblock_trace.request {

requestTime[$bio] = gettimeofday_us()

}

probe ioblock.end {

t = gettimeofday_us()

s = requestTime[$bio]

if (s > 0) {

latencyTimes <<< (t-s)

delete requestTime[$bio]

}

}

Another way to measure I/O from the

OS: using Ftrace

• https://github.com/brendangregg/perf-tools

52

./iolatency 10

Tracing block I/O. Output every 10 seconds. Ctrl-C to to end.

>=(ms) .. <(ms) : I/O |Distribution |

0 -> 1 : 95 |## |

1 -> 2 : 74 |## |

2 -> 4 : 475 |######### |

4 -> 8 : 2035 |######################################|

8 -> 16 : 1245 |######################## |

16 -> 32 : 37 |# |

32 -> 64 : 11 |# |

64 -> 128 : 7 |# |

128 -> 256 : 23 |# |

256 -> 512 : 10 |# |

512 -> 1024 : 4 |# |

Example: Probe all blocks subject to

physical I/O for performance

investigations

• Goal: analyse physical reads: how many are

‘new’ and how many are repeated reads

• Aid for sizing DB cache and SSD storage cache

• SystemTap probe on kcbzvb (block read)

• Can drill down per file/object number/process

• Example:

53

stap -g -v oracle_read_profile.stp

number of distinct blocks read: 24513631

total number of blocks read: 86711189

Build Your Own Lab and Experiment

• Install a test environment (under VirtualBox)

• RHEL/OEL 6.5 or higher

• RHEL/OEL 7.0 with 3.10 kernel as preference

• Install additional packages

• kernel-devel

• debuginfo and debuginfo-common packages

(available from https://oss.oracle.com)

• Install the advanced tracing tools

• SystemTap version 2.5 or higher

54

Additional Tips for Userspace

Investigations of Oracle

• Information on Oracle internal functions from MOS

• Get a copy of “Note 175982.1”

• gdb (GNU debugger)

• Read memory, stack backtraces and registers with gdb

• Know the Linux call convention: args are in %rdi, %rsi,…

• Stack profile visualisations with flamegraphs

• Help understand which functions are called more often

• DTrace-based tracing:

• ‘Digger’ by Alexander Anokhin (best on Solaris DTrace)

55

Wish List: Statically Defined Probes

in Oracle Code

• Statically defined probes

• Make userspace tracing more clean and stable
across versions

• An elegant and direct way of collecting and
aggregating info from the Oracle engine and
correlate with OS data

• Examples of database engines that have static
probes:

• MySQL and PosgreSQL

56

Wish List: More Info on Oracle

Functions, Variables, SGA Structures

• Oracle provides symbols in the executable

• However no info on the kernel functions

• Ideally we would like to have Oracle debuginfo

• Documentation on what the functions do, which

parameters they have, etc

• We can profit from knowledge sharing in the

community

• There is much more to investigate!

57

Acknowledgements and Contacts

• CERN Colleagues and in particular the

Database Services Group

• Our shared blog: http://db-blog.web.cern.ch/

• Additional credits

• Frits Hoogland for original work and collaboration on

the research

• Many thanks to for sharing their work and original

ideas: Tanel Poder, Brendan Gregg, Alexander

Anokhin, Kevin Closson

58

Example SystemTap Scripts for

Oracle Userspace Investigations

• Download from:

http://cern.ch/canali/resources.htm

59

histograms_oracle_events_11204.stp

histograms_oracle_events_12102.stp

histograms_oracle_events_version_independent.stp

trace_oracle_events_11204.stp

trace_oracle_events_12102.stp

trace_oracle_logicalio_wait_events_physicalio_11204.stp

trace_oracle_logicalio_wait_events_physicalio_12102.stp

trace_oracle_logical_io_basic.stp

trace_oracle_logical_io_count.stp

trace_oracle_wait_events_asyncio_libaio_11204.stp

trace_oracle_wait_events_asyncio_libaio_12102.stp

measure_io_patterns

blockio_latency.stp

Oracle_read_profile.stp

Oracle_read_profile_drilldown_file.stp

Oracle_read_profile_drilldown_objectnum.stp

experimental

logical_io_latency.stp

..

Conclusions

• Linux tools for advanced troubleshooting

• OS dynamic tracing, userspace tracing, ..

• Extend and complement Oracle wait interface data

• Collect data not available with other methods

• Perf and Systemtap

• Already available on RHEL6 or higher

• Powerful and fun to work with

• Easy to start: build on example scripts

• Happy testing!

Luca.Canali@cern.ch, Zbigniew.Baranowski@cern.ch

61

