

Modern Linux Tools for Oracle
Troubleshooting

Luca Canali, CERN
Zbigniew Baranowski, CERN | 7

UKOUG TECH14, Liverpool, December 2014 >/

About Luca

- Senior DBA and team lead at CERN IT
« Joined CERN in 2005
« Working with Oracle RDBMS since 2000

- Passionate to learn and share knowledge, how
to get most value from database technology

- @LucaCanaliDB and http://cern.ch/canali
QakTable.net
o

About CERN

- CERN - European Laboratory for Particle Physics

- Founded in 1954 by 12 countries for fundamental physics research
In a post-war Europe

- Today 21 member states + world-wide collaborations

« About ~1000 MCHF yearly budget
« 2’300 CERN personnel + 10°000 users from 110 countries

~

Distribution of All CERN Users by Nation of Institute on 27 October 2009

\RS/ANS CERN

LHC is the world’s largest particle
accelerator

LHC = Large Hadron Collider

27km ring of superconducting magnets
Currently undergoing upgrades, restart in 2015

How do you get
from this

to this

From particle
to article..

Higgs boson-like particle discovery
claimed at LHC

B3 COMMENTS (1665)

By Paul Rincon

Science editor, BBC News website, Geneva

P e e =y

>

The moment when Cemn director Rolf Heuer confirmed the Higgs results

Cern scientists reporting from the Large Hadron Collider (LHC)
have claimed the discovery of a new particle consistent with the
Higgs boson.

Rela

90 A .

g > M e & > . e - X
VR e~ E b M L e aa St ot <N

@Database At the heart of CERN, LHC and Experiment Operations AL

B

SERVICES

hitp:/lcern.ch/it-dep/db/

Expoﬂmont Offline Databases

9 Production DBs, 7 Integration DBs
5 Tests DBs, 8 (Active) Data Guards

§ mu
Experiment Online Databases
4 Producbon DBs, 8 (Active) Data Guards
& CASTOR é

21 Production DBs

4 Development DBs
1 Data Guard
— >
Middleware
73 Application

Administrative/IT/ Servers
Engineering Databases

17 Production DBs
11 Development DBs

4 Ref/Test DBs -

IT [)B
GROUP

PARTNERS:

Accelerators
ACC

12 Production DBs

This talk covers Linux tools for

advanced tracing and Oracle
Investigations

Modern tools opening new roads: Perf,
DTrace, Systemtap, ...

Probes on the OS to understand system calls

Probes for the userspace to understand
Oracle internals

This is a short exploration rather than a
lesson

Focus on techniques that you can use
today

Prerequisites

- Not covered here are many of the common and
most used tools and utilities

« top
strace
vmstat
lostat, sar, collectl, dstat

use of the /proc filesystem (ex cat /proc/meminfo)

You can probably run userspace and
dynamic tracing tools in Linux already

- Available with RHEL/OEL 6 or higher

- You gain:

 Tools for advanced troubleshooting
Insights in the working of Oracle and OS

Do | need dynamic tracing when |
have Oracle walt events?

Data beyond wait events
Instrument the latency details of ‘'on CPU’ time

Many Oracle wait events don’t provide good
measurements of 1/O latency

Wait event data + user space tracing + OS
tracing = new Insights

_ C—

About Zbigniew e

since 2009 at CERN
Developer
Researcher
DBA

DBA with > 5 years of experience

Already presented twice at UKOUG
about Streams and GoldenGate

Long Running Query -> on CPU?

- Enterprise Manager

Statistics = Activity Plan Plan Control = Tuning History SQL Monitoring

Status Duration SQL Plan Hash User Parallel Database Time 10 Requests Start Ended

3.0m 4175421420 | 5YS 3.0m 10:29:29 PM
o =1 N
1.8m 4175421420 | 5Y5 1.5m 10:14:55 PM 10:18:26 PM
» srs -
wJ 9.9m 4175421420 | 5YS 9.9m 9:24:43 PM 9:34:35 PM
.

SMEM TIME+ COMMAND

. OS @2971 oracie 20 0 100g 66ém 37m HLo0.0] 0.1 B83:37.95 oracle
4598 oracle 20 0 619m 8m 1d9m 5 1.3 0.0 403:50.17 gipcd.bin
4108 root 20 0 183Tm &63m 29m 5 1.0 0.0 215:24.56 ochasd.bin

Id	OCperation	Hame	Rows	Bytes	Cost ([(3CPU)	Time
0	SELECT STATEMENT				42899 (100}	
1	SORT ORDER BY		296M] 10G	42899 (61)	00:08:35	
2 1 2asE Groue BY			296M]	10G	42899 (61} 'M	
= 3 HASH JOLIN		296M] 10G	18028 (6)	00D:03:37		
4	TABLE ACCESS BY INDEX ROWID	EVENTHISTORY TEST	2500	65000	337 {0)] 00:00:05	
= 5	INDEX RANGE SCAN	EVENTHISTORY TEST TS	2500		9 {0)] 00:00:01	
6	TABLE ACCESS FULL	EVENTHISTORY TEST	11M	146M	16710 (1)] 00:03:21	

Snapper Can Help

—— Bession Snapper v3i.10 by Tanel Poder @ EZ5N (http://tech.eZsn.com)

S5ID, USEENZME , TYPE, STATISTIC , DELTZ, HDELTA/SEC, $TIME, GRAPH

2416, 5Y5 r STAT, =ess=sion logical reads , 1130, 113,

2416, 5Y5 r STAT, consistent gets , 1130, 113, Readlng

2416, 5Y5 , STAT, consistent gets from cache r 1130, 113,

24le, 5Y5 , STAT,] logical read bytes from cache r 9256980, BZE.TkJ

2416, SY5 , STAT, no WOork - conslstent read gets , 1150, 115, Cache

2416, 3Y5 ; OTAT, table scan rows gotten r 17283592, 17.2%k,

2416, S5Y35 , STAT, il 3 i ™

2416, 5Y5 , TIME,| PFL/5QL execution elapsed time . 9422513, 942 .25m=, 94,2%, |CGEEEEEEEEg)
2416, 5¥Y5 TIME,] DE CFU , 9591481, 999.15m=, 99.9%, |GEEEEEEEeE)
2416, 3Y5 , TIME, =gl execute elapsed Time r N L HOmE, . r

2416, S5Y5 , TIME, DE time , 895992749, 955, 93ms=, 100.0%, |CEEEEEEEEEE)

-— End of S5tats snap 1, end=2014-12-03 22:37:29, =econds=10

PL/SQL?

Wait event interface not
much useful in this case

SQL Monitor

- Buffer gets

10 Statistics
Buffer Gats 17K
I Requests 0
IO Bytes O
L
- PL/SQL almost all the time
Time & Wait Statistics
Cruration 2.1m
patabese Tove | ° '
PL/SCQL & Java 2.0
Wait Activity %%
- 100% act|V|ty on the hash jOII I
Operation ID Estimated Rows Cost Timeline(592s) Executio... Actual Rows| Memory (... Temp (Max) IO Requests Activity %
[E] SELECT STATEMENT 0 1 k2]
[] SORT ORDER BY 1 236M 43K 1 kS KE
HASH GROUP EY 2 236M 43) S 1 33 S1ME
I— _—
B} HASH JOIN 3 26M 1o = 1 6.446K 4Me . I
] TABLE ACCESS BY INDEX ROWID EVENTHISTORY_TEST 4 2,500 337 1 26K
INDEX RANGE SCAN EVENTHISTORY_TEST_TS 5 2,500 e 1 2K
TABLE ACCESS FULL EVENTHISTORY_TEST 13 12M 17K | —— 1 10,000K

- Can we get more? Lets try with perf

Perf ,@

- Linux profiler tool for
performance counters (PCL)
events observer (LPE)

- Integrated into the kernel
Avallable for kernel versions >= 2.6.31 (RHELO)

- Safe to use on production systems

Live view of top active functions

perf top [-p <pid of process>]

169K of event 'cycles', Event count [(approx.):

oracle Inxdiv
.06% oracle Inxadd
.25% oracle Inxmnl
F.07% oracle Inx=ub
=. 0% Oracie Tnemin
3.51% oracle pevm icd call common
2.29% 1libc-2.12.=20 e T e
2.24% oracle pfrinstr BCIR

1.685% oracle pfrinstr ADDN

r

[.1]

[.1]

[.1]

[.]

L.]

[-]

[.1]

[.1]

[.1]
1.64% oracle [-] pfrinstr CVIIN
1.54% oracle [.] pfrrun no tool
1.23% oracle [-] pfrinstr MULN
1.48% oracle [-] pfrinstr DIVN
1.21% oracle [.] pesmod
1.03% oracle [.] 1lnxtru
1.01% oracle [.] pi=sonu
0.87% oracle [.] loxmod
0.72% l1libc-2.12.=20 [-] s=sigsetjmp
0.71% oracle [-] pfrinstr MOVAN
0.82% oracle [.] peginu
0.87% oracle [-] pfrinstr BCAL
0.85% oracle [-] intel new memcpy
0.268% oracle [.] lonxcopy
0.268% oracle [-] intel fast memcpy

What are those Oracle functions?

Complete description of the functions called by
Oracle with is not officially published, but...

Google it or just guess ;)

Backups of some MOS notes can be handy

"ORA-600 Lookup Error Categories” (formerly
175982.1)

For actions which are part of query execution

http://blog.tanelpoder.com/files/scripts/tools/unix/os_e
xplain by Tanel Poder

http://blog.tanelpoder.com/files/scripts/tools/unix/os_explain

What have we learned so far?

Our sgl Is running some arithmetic operations:
function Inxdiv (38%) => division
function Inxadd (10%) => addition
function Inxmul (9%) => multiplication

Is it all the time like that?
wWhy (by whom) they are called?

Recording Samples with Perf

Function currently being executed sampling

perf record [-p <pid of process>] [-F <frequency>]

Full stack sampling

perf record —-g -p <pid of process> [-F <frequency>]

Be careful with the sampling frequency
99Hz is reasonable

Samples are recorded to a binary file ‘perf.data’

Displaying Recoded Data

- In human readable format (same as top)

perf report

'eycles', Event count [(approx.):

oracle oracle . NXJd1WV
+ 10.77% oracle oracle Inxadd

+ 29.87% oracle oracle Inxmnml

+ 2.45% oracle oracle Inx=ub

+ 3.22% oracle oracle Inxmin

+ 3.25% oracle oracle pevm icd call common
+ 2.45% oracle libe-2.12.s=0 METITmo W e

+ 2. % oracle oracle pfrinscr BCTR

oracle oracle
oracle oracle
oracle oracle

ol

pfrrun no tool
pfrinsctr MULN
pfrinstr CVTIN

| |

I I

tnononop
G B3 RS ORI O W s

it olf

+ 1.42% oracle oracle pfrinsctr DIVH

+ 1.42% oracle oracle pfrinsctr ADDHN

+ 1.23% oracle oracle pesmod

+ 1.21% oracle oracle pi=zonu

+ 1.14% oracle oracle Inxmod

+ 1.06% oracle oracle Inxtru

+ 0.76% oracle oracle pfrinstr MOWVAN

+ 0.71% oracle oracle __intel new memcpy
+ 0.88% oracle oracle peginu

+ 0.683% oracle oracle pfrinstr BCAL

+ 0.6832% oracle libec-2.12.=0 ___=sigsetjmp

+ 0.58% oracle oracle _intel fast memcpy
+ 0.52% oracle oracle Inxcopy

Displaying Recorded Stacks

perf report --stdio

Event count (approx.):

#

« Tree format E*?‘:’?f?%‘?? commmnd | Saased objec

Not easy to read!

There is a way of making
stack samples easier to
read...

1607803529978

Shared Cbhject Symbol

oracle oracle

——— Inxdiv

|-—-82.43%-- pfrinstr DIVN

| pfrrun _no tool
| E’ pfrrun

plsgl run
peldzrr_ run
peidxexe
kkxdexe
kkxnpexe
kgmexec
evapls
evaopn?

-—>

|-—-96.92%—— gerhjSplitProbe

gerhjInnerProbeHashTable
kdstf£00001010000km
kd=sttgr

gertbFetch

rwsfed

gerhijFetch
gerghFetch
gqerzoProcessULS
gersoFetch

opifch2

kpoalg

opiodr

ttepip

opitsk

Flame Graphs

Visualization of stack samples

AIN3LNOD MOV1LS

£
@
)
o
@
|
@
T
| S
o
>
@
3]
=
@
o
®
<
=
<

Author: http://www.brendangregg.com/

http://www.brendangregg.com/

How to create a flame graph

1. Collect stack samples of our process under investigation

perf record -a -g -F99 -p <pid of process>

2. Dumpstack traces in a text file

perf script > myperf script.txt

3. Get scripts: https://github.com/brendangregg/FlameGraph

4. Create a flame graph

grep -v 'cycles:' myperf script.txt|

. . /FlameGraph-master/stackcollapse-perf.pl |
. . /FlameGraph-master/flamegraph.pl --title "My graph”

https://github.com/brendangregg/FlameGraph

Flame Graph for our SQL

- Is called Inxdiv in at least 2 different places

G Flame Graph: full stack
| Inxdiv (FE) Inxsub ||
[Inxmod | -I | ‘
U | dnxdiv.ooo | im0 |
|/ pfrinstr_ADDN [pffinStrE B A p- pfri =

Il pfrrun_no_tool

= PLSOL RUN

oy
F)

a
o

gerhjFetch

o
[0']
r
&
0]
(=g
(o]
=0

p
P

o o
-
25

ssthrdmain
i

-
3
o
5

B

FG for Oracle Operations

4a) Extract sed commands from os_explain script
(by Tanel Poder)

wget http://blog.tanelpoder.com/files/scripts/tools/unix/os_explain

grep "s\/q" os_explain > os_explain.sed

4b) Create the flame graph using os_explain
mapping

grep -v 'cycles:' myperf script.txt|
sed -f os_explain.sed|

. ./FlameGraph-master/stackcollapse-perf.pl |
. ./FlameGraph-master/flamegraph.pl --title ”"My FG" >Figurel.svg

Flame Graph for our SQL

Flame Graph: Oracle actions named

| Inxdiv g inxsub | W0
nxmod pl I‘
[

| pfrinstr_ADDN
|l pfrrun_no_tool

kkxdexe

PLSOL RUN PLSOL RUN

HASH JOIN: SplitProbe

4. Table access by
rowid

sort: FG4ch ~~~~~ _~~~~~
~ opifch2 .
‘ _I Id | Operation | Name | Rows | Bvytes | Cost (RCPU)| Time | .
oopiodr T T T T T TS TS Tm ST B
P O | SELECT STATEMENT | | | | 42893 (100) | | B
opitsk | 1 | SORT ORDER BY l l 296M| 10G] 42889 (1)) 00:08:35 | B/
- CPIRGINNNN | > | HASH GROUP BY | | 29eM] 10G| 42899 (61)| 0o:08:35 | M
‘—I" 3 HASH JOIN I | 2968M]| 10G| 18028 ()] 00:03:37 | [|
soul,o—| 4 | TABLE ACCESS BY INDEX ROWID| EVENTHISTORY TEST | 2500 | 65000 | 337 (0)] 00:00:05 | .‘I
. epimairealy | < 5 | INDEX RANGE SCARN | EVENTHISTORY TEST T5 | 2500 | | 3 (0)] 00:00:01 | B
ssthrdmain =~ | & | TAELE ACCESS FULL | EVENTHISTORY TEST I 11M| 146M| 16710 {1)] 00:03:21 | B
I - —— - —— ——— ——
[__libc_start_main .-

FG for an Execution Plan

Create flame graph for query execution operations only:

grep -i -e ger -e opifch -e “*$ myperf script.txt|

sed -f os_explain.sed|

. ./FlameGraph-master/stackcollapse-perf.pl|
. ./FlameGraph-master/flamegraph.pl --title "Flame Graph Rowsource:

my select" >Figure2.svg

Flame Graph: Execution plan

HASH JOIN: SplitProbe
TA

HASH JOIN: Fetch

SORT: Fetch (56,767 samples, 100.00%)|

opifch2

Function: SORT: Fetch (56,767 samples, 100.00%)

What was the join condition of the query?

- compute(range_scan.VALUE NUMBER,1000)
= compute(full _table.VALUE NUMBER,100)

Predicate Information (identified bv operation id):

3 - access ("CCMPUTE" ("T1"."VALUE NUMBER",1000)="CCMPUTE"™ ("TZ"."VALUE NUMBER",100}) I
- — access ("I1"."I53">=T0 TIMESTAMP ("01-NOV-03 04.06.44,.755000000 PHM") AND
"T1"."T5"«<=TO TIMESTAMP('20-NOV-03 10.06.44.759000000 PM"))

return varchar?

create function compute(val in number, number)

as
ret number:=0;
begin
FOR i IN 1.. 1loop
ret:=ret (val 1,100)
end loop;
return ret;
end;

FG for Server Profiling

Entire server workload captured from 20 sec

Flame Graph

--.-----_m
-=580. BN wm--mun —
hmmm.....m%ﬁw.

Perf & Flame Graphs: Summary

. Perf
« user space exploration

- available >RHEL 6

« there other useful features (events tracing and probes)
- Flame graph

« call stack visualization

- Perf + flame graph

« Performance investigation

When wait-event interface does not deliver relevant
iInformation — CPU intensive processing

Advanced Tracing for Linux

- Solaris has DTrace since 2005, Linux iIs
catching up

- Currently many tools available

Oracle Linux DTrace, Dtrace4linux, SystemTap,
perf _events, ftrace, ktap, LTTng, eBPF, sysdig

Most of them still in development

DTrace and Linux

- DTrace license is CDDL, incompatible with GPL

- There are 2 ports of DTrace for Linux

« Both still in active development

« Oracle’s port for OEL (for ULN subscribers)

Notably it does not yet have userspace tracing with the
‘pid provider’

« ‘dtracedlinux’: a one-person effort
- unstable but with more functionality

How to Measure Latency with
Dynamic Tracing

The main ingredients:

Trigger execution probe at the start of a system
call (or a users function)

Run a probe at the return from the call
Measure the elapsed time
Aggregate data in a latency histogram

An Example with DTrace

- Measure latency histogram of pread64 calls

- Note: IOPS and latency of random reads very
iImportant for troubleshooting OLTP performance

dtrace -n '

syscall: :pread64:entry { self->s = timestamp; }

syscall: :pread64:return /self->s/ {
@pread["ns"] = (timestamp -self->s) ;
self->s = 0;

}

tick-10s {
printa (@pread) ;
trunc (Cpread) ;
} 1

systemtap

SystemTap [2 @.
L {
- Backed by Red Hat, started in 2005 U

Version 1.0 in 2009

Works by compiling and loading kernel modules

Scripting language similar to C, allows adding C
extensions

Easy to start working with it:

Look at example probes and build from there

Many similarities between DTrace and SystemTap
probes

SystemTap Userspace Probes

- Probes into executable processes (userspace)
« Read function arguments
« Read from process memory (ex: SGA and PGA)

. Linux support

« UTRACE -> available with SystemTap also Iin
RHELG

« UPROBES -> replace UTRACE for kernel version
from 3.5, available with SystemTap and more tools

- Dtracedlinux can also do userspace tracing

How to check If userspace tracing Is
available/active on your system

This is how to check if UTRACE
extensions are configured:

grep CONFIG UTRACE /boot/config- uname -r°
CONFIG UTRACE=y

This I1s how to check If UPROBES are
available:

grep CONFIG UPROB /boot/config- uname -r°

CONFIG UPROBES=y
CONFIG UPROBE EVENT=y

Key functions to probe the Oracle
walit event interface

Function
name

KSKTHBWT

KSKTHEWT

Purpose

Kernel Service Kompile Thread Begin
Wait.

This function is called at the start of an
Oracle wait event.

The suffix “bwt" most likely stands for
“begin wait".

kslwtbctx is its parent function call and
marks the start of a wait event.

Kernel Service Kompile Thread End Wait.
This function is called at the end of an
Oracle wait event.

The suffix "ewt" most likely stands for "end
wait".

kslwtectx is its parent function call marking
the end of a wait event.

Selected parameters

register r13 -> points into
X$KSUSE (VSSESSION) SGA
segmented array

register rsi -> timestamp of the
beginning of the wait (in
microseconds)

register rdx -> wait event number

register r13 -> points into
X$KSUSE (VSSESSION) SGA
segmented array

register rdi -> timestamp of the
beginning of the wait (in
microseconds)

register rsi -> wait event number

Systemtap can read from the Oracle
walit event interface

Example: how to write a probe tracing the
beginning of each wait event:

probe process ("oracle") .function ("kskthbwt") {

offset for 12.1.0.2
ksusenum = user uintlé (xksuse + 1704)

printf ("DB WAIT EVENT BEGIN: timestamp ora=%1d,
pid=%d, sid=%d, event#=%u\n", register("rsi"), pid(),
ksusenum, register ('"rdx"))

}

How to read X$KSUSE from SGA

- X$KSUSE -> underlying table of V$SESSION
- It's a segmented array

- Base of the array record: from CPU register R13
- With offset that is version-dependent

- The column offsets (record values) are available by
guerying X$KQFCO and X$KQFTA

- Records contain info on: userid, sgl_hash, wait elapsed
time, ...

Example: How to collect walit event
histograms with microsec resolution

- V$EVENT_ HISTOGRAM useful to study latency

« However only milisec precision, a problem when studying
SSD latency

« Note 12.1.0.2 has VSEVENT_HISTOGRAM_MICRO

- Solution: userspace tracing of Oracle processes

« Provides way to collect and display microsec-precision
histograms for all Oracle versions

« Capture event# and wait time in microseconds
« Collect data in a SystemTap aggregate
« Print output as a histogram

Example of wait event histograms

collected with SystemTap

stap -v histograms oracle events 11204.stp -x <pid>
Note: omit -x to trace all oracle processes

Histogram of db file sequential read waits in microseconds (us):

WELED | e e e e e e m e s o s e e e) count
128 | @ 33
256 |@E@ 60
512 |QQMd 6l

1024 |@QQE 93
2048 |QREEEEERRREEEE 260
4096 |CRCECECECELRLRRRRCLCRRRRRLCLCCLEEELELELRLRLRLRLRRLRRRRRRRRRRRRE 951
8192 |QRCRCERRRRRRRRRRECLRLCLCEEEEEEQEQ 538

16384 |@@ 477

32768 |@@M 71

65536 |@ 34

131072 |QEQEQREQE@A 153
262144 |@QQ 62

524288 | 16

SystemTap Probes for Oracle Logical
and Physical I1/0O

|ldentify the Oracle internal functions of interest:

Function Description
kcbgtcr Kernel Cache Buffers Get Consistent Read
Used for consistent reads
kcbgcur Kernel Cache Buffers Current Read
Used for current reads
kcbzib kcbZIB should stand for: Z (kcbz.o is a module for physical IO

helper functions), IB: Input Buffer
Oracle will perform physical read(s) into the buffer cache

kcbzghb The suffix GB in kcbZGB should stand for: Get (space for)
Buffer. Oracle allocates space in the buffer cache for a given
block (typically before I/O operations).

kcbzvb Invoked after Oracle has performed I/O to read a given block
Note: this function is used both for reads in the buffer cache
and for direct reads

Find the key function call parameters
and their meaning

- ldentify the function parameters of interest
(block number, file number, etc)

- Example for kcbgtcr and kcbgcur

tbs#

rel file n#

block#

data object id#
object id#

Note:

for bigfile

user int32(%$rdi)

user int32 (%$rdi+4) >> 22 & O0xO003FFFFF
user int32(%rdi+4) & OxOO3FFFFF

user int32 (%rdi+8)

user int32 (%$rdi+l12)

tablespaces: block# = user int32(%rdi+4)

Putting it all together: Trace walt
events + logical and physical I/O

- Provide insights on how Oracle does the 1/O

« What are the I/O-related wait events really
measuring?

Can we rely on the measurements of wait elapsed
time to understand I/O latency?

« Trace:

stap -v

trace oracle logicalio wait events physicalio 12102.stp
-x <pid> | sed —-f eventsname.sed

Example of tracing ‘db file sequential

read’ walit event

DB LOGICAL IO Consistent Read (kcbgtcr) for block: tbs#=7, rfile#=0, block#=2505675,
obj#=32174
->kcbzib, Oracle logical read operations require physical reads into the buffer
cache
-> kcbzgb, Oracle has allocated buffer cache space for block: tbs#=7, rfile#=0,
block#=2505675, obj#=32174

DB WAIT EVENT BEGIN: timestamp ora=498893930487, pid=15559, sid=21, event=db file
sequential read

0S: ->pread: timestamp=498893930555, program=oracle 15559 or, pid=15559, £d=264,
offset=83048882176, count (bytes)=8192

OSs: ->ioblock.request, timestamp=498893930588, pid=15559, devname=sdl,
sector=162204848, size=8192, rw=0, address bio=18446612144946364800
OsS: <-ioblock.end, timestamp=498893934550, pid=0, devname=sdl, sector=162204864,

rw=0, address bio=18446612144946364800
0S: <-pread: timestamp=498893934592, program=oracle 15559 or, local clock us(),
pid=15559, return (bytes)=8192

DB WAIT EVENT END: timestamp ora=498893934633, pid=15559, sid=21, name=SYSTEM,
event=db file sequential read, pl=7, p2=2505675, p3=1, wait time=4146, obj=32172,
sql hash=964615745

->kcbzvb, Oracle has performed I/O on: file#=7, block#=2505675, rfile#=0

What the trace shows about ‘db file
seguential read’

Oracle starts with a logical I/O

If the block is not in the buffer cache a physical
read is initiated

A block in the buffer cache is allocated

The wait event db file sequential read is started
Oracle calls pread to read 8KB

This passed on to the block 1/O interface

After the read is done, the wait event ends

Comment on the wait time: db file sequential read
Is dominated by synchronous I/O walit time

The Case of Direct Reads and
Tracing Oracle Asynchronous I/O

- Asynchronous I/O is used by Oracle to optimize I/O
throughput
« OScalls used: IO_SUBMIT and I0O_GETEVENTS
« We consider the case of ASM on block devices
- Findings:
« Oracle can perform reads that are not instrumented by
the wait event interface

« The wait event ‘direct path read’, does not instrument all
the reads

« The wait event elapsed time is not the 1/O latency

0S: ->io_submit: timestamp=769804010693, program=oracle 18346 or, pid=18346, nr(num I/O)=1

1: file descriptor=258, offset=93460627456, bytes=1048576, opcode=0
0S: <-io_submit: timestamp=769804010897, program=oracle 18346 or, pid=18346, return(num I/O)=1
...many more io_submit and also io_getevents..

DB WAIT EVENT BEGIN: timestamp ora=769804024008, pid=18346, sid=250, event#=direct path read
LIBAIO:->io_getevents 0 _4: timestamp=769804024035, program=oracle 18346 or, pid=18346, min nr=1,
timeout. tv_sec=600
0S: ->io_getevents: timestamp=769804024060, program=oracle 18346 or, pid=18346, min nr=1,
timeout={.tv_sec=600, .tv_nsec=0}
0S: <-io_getevents: timestamp=769804028511, program=oracle 18346 or, pid=18346, return(num I/O)=4
0:, fildes=260, offset=79065776128, bytes=1048576
1:, fildes=261, offset=89295683584, bytes=1048576
2:, fildes=263, offset=84572897280, bytes=1048576
3:, fildes=262, offset=94479843328, bytes=1048576
LIBAIO:->io _getevents 0 4: timestamp=769804028567, program=oracle 18346 or, pid=18346, min nr=1,
timeout. tv_sec=600
0S: ->io_getevents: timestamp=769804028567, program=oracle 18346 or, pid=18346, min nr=1,
timeout={.tv_sec=600, .tv_nsec=0}
0S: <-io_getevents: timestamp=769804034142, program=oracle 18346 or, pid=18346, return(num I/O)=1
0:, fildes=264, offset=83009470464, bytes=1048576
LIBAIO:->io _getevents 0 4: timestamp=769804034797, program=oracle 18346 or, pid=18346, min nr=1,
timeout. tv_sec=600
0S: ->io_getevents: timestamp=769804034834, program=oracle 18346 or, pid=18346, min nr=1,
timeout={.tv_sec=600, .tv_nsec=0}
0S: <-io_getevents: timestamp=769804037359, program=oracle 18346 or, pid=18346, return(num I/O)=4
0:, fildes=265, offset=93436510208, bytes=1048576
1:, fildes=267, offset=89061851136, bytes=1048576
2:, fildes=269, offset=78286684160, bytes=1048576
3:, fildes=268, offset=83802259456, bytes=983040
DB WAIT EVENT END: timestamp ora=769804037433, pid=18346, sid=250, name=SYSTEM, event#=direct
path read, pl=7, p2=4324864, p3=128, wait time
=13425, obj=32176, sql hash=1782650121

Oracle wait events for asynchronous
/O cannot be used to study latency

Example of how to measure 1/O latency from the block
/O Interface using SystemTap:

global latencyTimes, requestTime[10000]

probe ioblock trace.request {
requestTime[$bio] = gettimeofday us()
}

probe ioblock.end ({
t = gettimeofday us()
s = requestTime[S$bio]
if (s > 0) {

delete requestTime[S$Sbio]

Another way to measure 1/O from the
OS: using Ftrace

- https://github.com/brendangregg/perf-tools

10
Tracing block I/O. Output every 10 seconds. Ctrl-C to to end.

>=(ms) .. <(ms) : I/0 |Distribution |
1 : 95 | ## |
2 : 74 | ## |
4 : 475 | #3t4#H# H 44 |
8 : 2035 | #HHHHFRAHHHHFR ARG HHF R HHFF AR GHHFFEH#
16 : 1245 | #HHHH AR HHHH AR HHFFHHH |
32 : 37 | # |
64 : 11 E: I
. 7 | # |

: 23 | # |

: 10 | # |

| # I

Example: Probe all blocks subject to

physical I/O for performance
Investigations

Goal: analyse physical reads: how many are
‘new’ and how many are repeated reads

Aid for sizing DB cache and SSD storage cache

SystemTap probe on kcbzvb (block read)

Can drill down per file/object number/process
Example:

stap -g -v oracle read profile.stp

number of distinct blocks read: 24513631
total number of blocks read: 86711189

Build Your Own Lab and Experiment

- Install a test environment (under VirtualBox)
RHEL/OEL 6.5 or higher
RHEL/OEL 7.0 with 3.10 kernel as preference

- Install additional packages

kernel-devel

debuginfo and debuginfo-common packages
(available from https://oss.oracle.com)

- Install the advanced tracing tools
SystemTap version 2.5 or higher

Additional Tips for Userspace
Investigations of Oracle

- Information on Oracle internal functions from MOS
Get a copy of “Note 175982.1"

- gdb (GNU debugger)

Read memory, stack backtraces and registers with gdb
Know the Linux call convention: args are in %rdi, %rsi,...

- Stack profile visualisations with flamegraphs
Help understand which functions are called more often

- DTrace-based tracing:
‘Digger’ by Alexander Anokhin (best on Solaris DTrace)

Wish List: Statically Defined Probes
In Oracle Code

Statically defined probes

Make userspace tracing more clean and stable
across versions

An elegant and direct way of collecting and
aggregating info from the Oracle engine and

correlate with OS data

Examples of database engines that have static

probes:
MySQL and PosgreSQL

Wish List: More Info on Oracle
Functions, Variables, SGA Structures

Oracle provides symbo
However no info on the
deally we would like to

S In the executable
kernel functions

nave Oracle debuginfo

Documentation on what the functions do, which
parameters they have, etc

We can profit from knowledge sharing in the

community

There is much more to investigate!

Acknowledgements and Contacts

- CERN Colleagues and in particular the
Database Services Group

Our shared blog: http://db-blog.web.cern.ch/

- Additional credits

Frits Hoogland for original work and collaboration on
the research

- Many thanks to for sharing their work and original

iIdeas: Tanel Poder, Brendan Gregg, Alexander
Anokhin, Kevin Closson

Example SystemTap Scripts for
Oracle Userspace Investigations

Download from:
http://cern.ch/canali/resources.htm

histograms oracle events 11204.stp
histograms oracle events 12102.stp
histograms oracle events version independent.stp
trace oracle events 11204.stp
trace oracle events 12102.stp
trace oracle logicalio wait events physicalio 11204.stp
trace oracle logicalio wait events physicalio 12102.stp
trace oracle logical io basic.stp
trace oracle logical io_count.stp
trace oracle wait events asyncio libaio 11204.stp
trace oracle wait events asyncio libaio 12102.stp
measure_ io patterns

blockio latency.stp

Oracle read profile.stp

Oracle read profile drilldown file.stp

Oracle read profile drilldown objectnum.stp
experimental

logical io latency.stp

Conclusions

- Linux tools for advanced troubleshooting
« OS dynamic tracing, userspace tracing, ..
- Extend and complement Oracle wait interface data
« Collect data not available with other methods

- Perf and Systemtap
- Already available on RHELG or higher
« Powerful and fun to work with
- Easy to start: build on example scripts

- Happy testing!

@ Luca.Canali@cern.ch, Zbigniew.Baranowski@cern.ch

NS

i

www.cern.ch

61

