

Storage Latency for Oracle DBAs

Luca Canali – CERN Marcin Blaszczyk - CERN

UKOUG 2013 Technology Conference

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

CERN

- European Organization for Nuclear Research founded in 1954
- 20 Member States, 7 Observer States + UNESCO and UE
- 60 Non-member States collaborate with CERN
- 2400 staff members work at CERN as personnel, 10 000 more researchers from institutes world-wide

LHC, Experiments, Physics

- Large Hadron Collider (LHC)
 - World's largest and most powerful particle accelerator
 - 27km ring of superconducting magnets
 - Currently undergoing upgrades, restart in 2015
- The products of particle collisions are captured by complex detectors and analyzed by software in the experiments dedicated to LHC
- Higgs boson discovered!

• The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

• The world's largest scientific computing grid

More than 100 Petabytes of data stored and analysed. Increasing: 20+ Petabytes/year

Over 68 000 physical CPUs Over 305 000 logical CPUs

157 computer centres in 36 countries

More than 8000 physicists with real-time access to LHC data

CERN's Databases

- ~100 Oracle databases, most of them RAC
 - Mostly NAS storage plus some SAN with ASM
 - ~500 TB of data files for production DBs in total
- Examples of critical production DBs:
 - LHC logging database ~170 TB, expected growth up to ~70 TB / year
 - 13 Production experiments' databases
- Relational DBs play a key role in the LHC production chains
 - Accelerator logging and monitoring systems
 - Online acquisition, offline: data (re)processing, data distribution, analysis
 - Grid infrastructure and operation services
 - Monitoring, dashboards, etc.
 - Data management services
 - File catalogues, file transfers, etc.
 - Metadata and transaction processing for tape storage system

A DESCRIPTION OF THE PARTY OF

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency data in Oracle
- Examples
- Tools
- Conclusions

Latency

- Latency, a measure of time.
 - In the context of this presentation: time to access data

Understanding Latency

- How long I should wait for baby elephant?
 - Elephant gestation period ~22 month

• Latency: 22 months

Understanding Throughput

• What if I want 2 baby elephants?

- Throughput has doubled:
 - 2 elephants in 22 months
- Latency: still 22 months

I/O Operations Per Second

- IOPS is a measure of throughput
- IOPS depends also on latency
- Latency differs for
 - 'random' reads
 - *'sequential'* reads

- How can we get more IOPS without increasing the latency?
 - Use Many HDDs!

Why We Care About Storage Latency

- Performance analysis and tuning:
 - Where is the time spent during a DB call?
 - What response time do the users see from the DB?
- OLTP-like workloads:
 - Response time can be dominated by I/O latency
 - Index-based access, nested loops joins

Physical Sources of Latency

- Blocking I/O calls:
 - Think access to a large table via an index
 - Random access
 - HDD: head movement and disk spinning latency

What can we do: Hardware

- Current trends for HW
 - Large SSD cache in storage
 - Tiered storage
 - Servers with large amounts of memory
 - Reduce (random) reads
 - Caching large amounts of data
 - Trends towards in-memory DBs
- A balance act performance vs. cost

What can we do: Software

- Big gains in application/SQL optimization
 - SW optimisation beats HW optimisation most of the times
- Oracle tuning:
 - Understand when single-block access is not optimal
 - Full scan vs. index-based access
 - Hash join vs. nested loop
 - In general: get a good execution plan

So Where is the Problem?

- DB Admin:
- Storage is slow!

- The problem is with the DB!

- Reality check:
 - Lack of clear storage performance data.
 - Changing database workloads.

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

Transactional Workload

Example from OEM

- DB time dominated by 'db file sequential read'
 - CPU is not a bottleneck
 - Ignore locks and other serialization events

Oracle Wait Events

- Can we troubleshoot a storage issue from the DB engine?
 - Not in the general case
- What can we do?
 - Oracle wait event instrumentation is great
 - Wait event histograms is a key source of data

Wait Event Analysis

- We want to drill down
 - 'db file sequential read' wait event
 - Also useful for 'log file sync' event
- What can we gain?
 - Make educated guesses of what is happening on the storage
 - Attack the root causes of the problem

A Story From Our Production

- Migrated to a new storage system
 - NAS storage with SSD cache
 - Good performance: because of low-latency reads from SSD
- Issue:
 - From time to time production shows unacceptable performance
- Analysis:
 - The issue appears when the backup runs!

Wait Event Drill Down

Very slow reads appear

Reads from SSD cache go to zero

What We Found

- AWR data used to examine the issue
 - DBA_HIST_EVENT_HISTOGRAM
 - Wait event: db file sequential read
- I/O slow during backups
 - because fewer I/O requests were served from SSD
- Note: how we worked around this issue
 - Short term: moved backup to Active Data Guard replica
 - Medium term: upgraded filer model

Lesson Learned

- If response time is dominated by db_file_sequential_read
 - Drill down on wait event histogram
 - Average latency values are not good enough
 - Latency details provide info on what is happening on the storage

Real-Time Monitoring

- Problem:
 - How to perform real-time monitoring of the event latency?
- Answer: V\$EVENT_HISTOGRAM
 - Cumulative counters
 - We need to compute deltas

Monitoring Latency - Snapshots

Custom script: ehm.sql

primary:syst	em@orclrac1	> @€	ehm 60	9 db%s	equen	tial				
waiting for	60 sec (del	ta m	neasu	rement	inte	rval =	= 60 sec)			
Wait (ms)	N#	Eve	ent				Last updat	te time		
1	12588	db	file	seaue	ntial	read	20-NOV-13	04.52.02.549024	РМ	+02:00
2	638	db	file	seque	ntial	read	20-NOV-13	04.52.02.323209	РМ	+02:00
4	241	db	file	seque	ntial	read	20-NOV-13	04.52.00.017278	ΡM	+02:00
8	1032	db	file	seque	ntial	read	20-NOV-13	04.52.02.407010	ΡМ	+02:00
16	6128	db	file	seque	ntial	read	20-NOV-13	04.52.02.520877	ΡM	+02:00
32	3865	db	file	seque	ntial	read	20-NOV-13	04.52.02.526403	ΡМ	+02:00
64	622	db	file	seque	ntial	read	20-NOV-13	04.52.02.475484	ΡM	+02:00
128	48	db	file	seque	ntial	read	20-NOV-13	04.52.02.454875	ΡM	+02:00
256	2	db	file	seque	ntial	read	20-NOV-13	04.51.35.738163	ΡM	+02:00
512	1	db	file	seque	ntial	read	20-NOV-13	04.51.54.617231	ΡM	+02:00
1024	13	db	file	seque	ntial	read	20-NOV-13	04.52.01.560293	ΡM	+02:00
2048	Θ	db	file	seque	ntial	read	20-NOV-13	03.19.40.350234	ΡM	+02:00
4096	Θ	db	file	seque	ntial	read	15-NOV-13	02.25.22.371191	AM	+02:00
8192	Θ	db	file	seque	ntial	read	31-0CT-13	01.01.10.757675	AM	+02:00
16384	Θ	db	file	seque	ntial	read	28-0CT-13	11.51.50.122887	ΡM	+02:00
32768	Θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.599088	ΡM	+02:00
65536	Θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.601458	ΡM	+02:00
131072	θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.606092	PM	+02:00
Avg_wait(ms)	N#	Tot	t_wait	t(ms)	Event					
8.5	25177	214	1095.1		db fi	le sec	quential re	ead		

Script can be downloaded from: http://canali.web.cern.ch/canali/resources.htm

Monitoring Latency - Snapshots

primary:system@orclrac1> Cehm 60 dbxsequential

Wait (ms)	NI	Event
1 2 4 8 16 32 64 128 256 512 1824 2848 4896	15958 1317 1355 2598 9845 8339 1607 124 7 1 15 8	db file sequential read db file sequential read
8192	0	db file sequential read
Avg_wait(ms)	N#	Tot_wait(ns) Event
10.3	41159	423786 db file sequential a

Wait (ms)	N#	Event
1 2 4 8 332 64 2256 2256 2048 4096 8192 16384 32758 65536 65536	16 61 238 238 2428 2428 2428 2428 2428 2428 2	db file sequential read db file sequential read
Avg_wait(ms)	NII	Tot_wait(mp) Event
53.4	43992	2350245.9 db file sequential re-

Display Latency Data over Time

- It's a three dimensional representation:
 - Latency bucket, value, time
- This problem has been solved before!
- Heat Map representation
 - Used for example in Sun ZFS Storage 7000
 Analytics
 - Reference: Brendan Gregg, Visualizing system latency, Communications of the ACM, July 2010

Heat Maps

By Definition

- graphical representation of data where the individual values contained in a matrix are represented as colours (wikipedia)
- Examples:

- X=time, Y=latency bucket
- Colour=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Colour=events per second (e.g. IOPS)

IME

- X=time, Y=latency bucket
- Colour=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Colour=events per second (e.g. IOPS)

Latency Heat Maps - Frequency

- X=time, Y=latency bucket
- Colour=events per second (e.g. IOPS)

Another Metric of Interest

- How much time do we wait in a given bucket?
 - Not directly available in v\$event_histogram
- How to estimate it? Example:
 - 100 waits in the bucket 8ms means
 - Wait time between 100*4 ms and 100*8 ms
 - Approximate: 100 * 6 ms [that is 100 * ³/₄ * 8 ms]
- Definition:
 - Intensity = 0.75 * bucket_value * frequency_count

Latency Heat Maps - Intensity

- X=time, Y=latency bucket
- Colour= intesity [time waited per bucket]

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

Stress Testing

- Scenarios
 - Investigate HW performance
 - Compare different systems
 - Example: compare current storage with a new system
- It's hard:
 - Choose test workloads that make sense
 - Understand effects of caching

SLOB 2

- An Oracle-based stress testing tool
 - Search: "SLOB 2 by Kevin Closson"
- Great tool generate lots of random IO
 - Directly from Oracle processes
 - Physical reads from storage
 - Become Oracle's wait events for db file sequential read
- Size of test data is configurable
- Concurrency is configurable

Example: "Too Good To Be True"

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

- 23 SAS disks
 delivering 20K IOPS?
- It doesn't make sense
- Latency is the clue
- Reads served by controller cache!

Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: test data size was too small

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event histogram

Sample num:55, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Example: "Too Good To Be True"

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

- 23 SAS disks
 delivering 20K IOPS?
- It doesn't make sense
- Latency is the clue
- Reads served by controller cache!

Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: test data size was too small

Example: "Load Till Saturation"

)raLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event_histogram

23 SAS disks JBOD & ASM

4 consecutive tests with increasing load

Sample num:105, latest sampling interval: 10.5 sec

Fop graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: don't accept IOPS numbers without latency values

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event histogram

Sample num:105, latest sampling interval: 10.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Example: "Load Till Saturation"

)raLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event_histogram

23 SAS disks JBOD & ASM

4 consecutive tests with increasing load

Sample num:105, latest sampling interval: 10.5 sec

Fop graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: don't accept IOPS numbers without latency values

IOPS and Latency are Related

- Observation: as IOPS approach saturation latency increases fast
- Confirmed: a simple model from queueing theory:

0.5 TB dataset, 100% in SSD, 56 sessions, random reads - NAS system

10TB dataset, 128 sessions, random reads, disk saturation - NAS system

Sample num: 92, Delta time (sec): 3.0, Date: 30-SEP-13 07.43.48.097197 PM +02:00 Label: db file sequential read latency data from gv\$event histogram

Monitoring Production Systems

- Understand I/O response time
 - Help for tuning and capacity planning
 - Attack questions like: is the storage slow?
- Drill down on three areas:
 - I/O served by SSD/controller cache
 - I/O served by physical disk 'spindles'
 - I/O with very large latency: outliers

An Example of a Busy System

Sample num: 110, Delta time (sec): 3.0, Date: 27-AUG-13 04.33.25.703586 PM +02:00 Label: db file sequential read latency data from gv\$event_histogram

What Can We Learn?

- Example of analysis
 - i.e. drill down 'db file sequential read'
- Are disks close to saturation?
 - NO, but latency high (SATA disks)
- I/O outliers?
 - YES, Further investigation on controller needed
- Do we have SSD/cache?
 - YES, ~30% reads with low latency
 - We could profit from a larger SSD cache maybe?

Log File Sync

Example from a production system

Low latency from writes because of storage cache

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

OraLatencyMap v1.0 May 2013 - Luca.Canali@cern.ch

Heat map representation of log file sync wait event latency from gv\$event histogram

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

Log File Sync

Example from a production system

Low latency from writes because of storage cache

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

Log File Sync

Anomaly, on a test system

High latency caused by HW Issues and high load from Oracle

ample num:154, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: log file sync (e.g. use to analyze commit latency).

Heat map representation of log file sync wait event latency from gv\$event_histogram

Sample num:154, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: log file sync (e.g. use to analyze commit latency).

Log File Sync

Anomaly, on a test system

High latency caused by HW Issues and high load from Oracle

ample num:154, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: log file sync (e.g. use to analyze commit latency).

Limitations

- Wait event timing is done by Oracle code
 - May not reflect actual I/O service time
 - CPU time may also be accounted as I/O wait
 - Server high load can distort the timing values
 - V\$event_histogram has only milli sec precision
- Asynchronous I/O
 - Wait events of this family are very hard or impossible to utilize in the context of latency

Blocking Calls

- Db file sequential read
 - Is the easiest event to relate to I/O service time
 - Instruments single-block reads, blocking I/O
 - Note: in some cases Oracle can use async I/O for random reads, e.g. for prefetching and batching. Wait event used in that case is 'db file parallel read'
- Log file sync
 - Big part of the commit-time wait
 - Complex: it's not a pure I/O event
 - The root causes of high latency here can also be CPU starvation and LGWR behaviour (e.g. bugs)

Latency and Trace Files

- Latency data is available in 10046 trace files
 - With micro second precision
 - Allows drill down to session level
 - As opposed to using global GV\$ views

SQL> exec dbms_monitor.session_trace_enable(sid,serial#)

nam='db file sequential read' ela= 977 file#=7
block#=29618220 blocks=1 obj#=82015 tim=1377520823036634

More Latency Sources

- DTrace
 - Great performance tool, coming to Linux too
 - Can be used to gather I/O latency histograms
 - Use of the quantize operator

```
dtrace -n '
syscall::pread64:entry { self->s = timestamp; }
syscall::pread64:return /self->s/ { @pread["ns"] =
quantize(timestamp -self->s); self->s = 0; }
tick-10s {
```

```
printa(@pread);
trunc(@pread);
```


Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

Tools

- Automate tedious tasks
 - Data collection
 - Visualisation
- Provide data and help answer questions
 - Drill down on I/O wait events
- Find trends and evolution
 - How does performance change over time
 - Is it Oracle workload changing or is it the storage that has become slow?

Tools: PerfSheet 4

- Simple Analytic platform for AWR data
- Predefined queries and graphs
- Power of Pivot Charts

Tools: PerfSheet 4

Image:														- 0	23						
File Home Insert Page Layout Formulas Data Review View Developer Acrobat															- 7	23					
Paste Clip	∦ Cut È Copy → ダ Format F pboard	Calibri B I	- 11 <u>U</u> - □ Font	1 · A		= <mark>= &</mark>	・ 部 Wrap 章 函 Merg	Text e & Center ◄	General	▼ 00.00 •.00	Conditional Formatting *	Format as Table *	Normal Good Styles	Bad Neutral	* * *	∎ Insert	Delete Format	Σ AutoSum Fill ▼ Clear ▼	Sort & Filter * Editing	Find & Select +	
	H2	- (-	rfsheet 4	is a perfor	mance too	•									~						
	A B C D E F G										G				Н						
1 2 3 4 5 6 7 7 8 9 9		Query	Oracl	e	Username: system Password: ******* DB alias: ORCL Query : Wait events (dba_hist_system_event) Time filter: between sysdate-7 and sysdate Show SQL: TRUE							Perfsheet 4 is a performance tool for Oracle AWR analytics in Excel Authors: Luca.Canali@CERN.ch, Tanel@TanelPoder.com Version: 3.3 (March 2013 + minor changes in Oct 2013) Additional credits: DB_Group@CERN, Rhojel Echano, Hans-Peter Sloot Compatibility: Oracle RDBMS 11.2 and 12.1, Excel 2010 Usage: Step 1: Load data into Excel								l	
10 11 12 13 14 15 16 17 18 19 20 21		Plot D	ata]	Load from csv Expo					ort to csv			Edit database credentials here on the left and run the query (click on the DB icon) Another (alternative) approach is to load data from a previously created csv file Csv files can be generated from sql*plus using the scripts in sqlplus_scripts directory Step 2: Plot data Click on the Plot Data icon. Pre-defined graphs are available for the queries provided with this tool								
	Main	Oueries D:	ata Pivot	Notes	* ⊐ /							1.	4	. 110						Þ	•
Ready		Queries / De	ILU Z FIVUL	(notes (~~*/							L	•	1111				100% —		+):

Tools: PerfSheet 4

Tools: OraLatencyMap

- It's a SQL*Plus script based on PL/SQL
 - Lightweight, does not require any installation
 - Command line interface
 - Heat Maps generated using ANSI escape codes
- Get started:

SQL> @OraLatencyMap

Tools: PyLatencyMap

- It's written in Python + SQL*Plus scripts
 - No installations required, CLI, lightweight
 - More advanced than OraLatencyMap
- Can be used for generic latency sources
 - Oracle v\$, trace files, AWR, DTrace data, etc
 - Pre-built examples available
- Feature: record and replay

Getting Started with PyLatencyMap

- Modular architecture
 - Source | <optional filter> | visualization engine
- Get started

./Example1_oracle_random_read.sh

- Video, getting started with PyLatencyMap
- <u>http://www.youtube.com/watch?v=-YuShn6ro1g</u>

Outline

- CERN and Oracle
- Latency: what is the problem we are trying to solve
- Storage latency in Oracle
- Examples
- Tools
- Conclusions

Conclusions

- Analysis of I/O latency
 - A powerful technique in performance tuning
 - Latency average is not enough, need histograms
 - Oracle wait interface has histogram details
- PylatencyMap for data collection and visualisation
 - for Oracle and generic data sources
 - http://cern.ch/canali/resources.htm
- Latency heat maps are great!

Acknowledgements

- Our colleagues in the CERN Database Group
 - In particular: Ruben Gaspar
- Many ideas borrowed from blogs and articles:
 - Brendan Gregg, Tanel Poder, Kevin Closson, Frits Hoogland, Marcin Przepiorowski, James Morles, Kyle Hailey, Cary Millsap

Thank you!

Luca.Canali@cern.ch Marcin.Blaszczyk@cern.ch

UKOUG 2013 Technology Conference

www.cern.ch