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About Luca

• Computing engineer and team lead at CERN IT

– Hadoop and Spark service, database services

– Joined CERN in 2005

• 17+ years of experience with database services

– Performance, architecture, tools, internals  

– Sharing information: blog, notes, code

• @LucaCanaliDB – http://cern.ch/canali
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CERN and the Large Hadron Collider

• Largest and most powerful particle accelerator 

3#EUdev2



Apache Spark @ 

• Spark is a popular component for data processing

– Deployed on four production Hadoop/YARN clusters

• Aggregated capacity (2017): ~1500 physical cores, 11 PB

– Adoption is growing. Key projects involving Spark:

• Analytics for accelerator controls and logging

• Monitoring use cases, this includes use of Spark streaming

• Analytics on aggregated logs

• Explorations on the use of Spark for high energy physics

Link: http://cern.ch/canali/docs/BigData_Solutions_at_CERN_KT_Forum_20170929.pdf
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Motivations for This Work 

• Understanding Spark workloads 

– Understanding technology (where are the bottlenecks, how 

much do Spark jobs scale, etc?)

– Capacity planning: benchmark platforms

• Provide our users with a range of monitoring tools

• Measurements and troubleshooting Spark SQL

– Structured data in Parquet for data analytics

– Spark-ROOT (project on using Spark for physics data)
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Outlook of This Talk

• Topic is vast, I will just share some ideas and 

lessons learned

• How to approach performance troubleshooting, 

benchmarking and relevant methods

• Data sources and tools to measure Spark 

workloads, challenges at scale

• Examples and lessons learned with some key tools 
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Challenges

• Just measuring performance metrics is easy

• Producing actionable insights requires effort and 
preparation
– Methods on how to approach troubleshooting performance

– How to gather relevant data

• Need to use the right tools, possibly many tools

• Be aware of the limitations of your tools

– Know your product internals: there are many “moving parts”

– Model and understand root causes from effects
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Anti-Pattern: The Marketing 

Benchmark

• The over-simplified 

benchmark graph

• Does not tell you why B 

is better than A  

• To understand, you need 

more context and root 

cause analysis
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Benchmark for Speed

• Which one is faster?

• 20x                          10x                      1x 
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Adapt Answer to Circumstances

• Which one is faster?

• 20x                        10x                   1x 

• Actually, it depends..
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Active Benchmarking
• Example: use TPC-DS benchmark  as workload generator

– Understand and measure Spark SQL, optimizations, systems performance, etc
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Troubleshooting by Understanding

• Measure the workload 
– Use all relevant tools

– Not a “black box”: instrument code where is needed

• Be aware of the blind spots
– Missing tools, measurements hard to get, etc

• Make a mental model
– Explain the observed performance and bottlenecks

– Prove it or disprove it with experiment

• Summary: 
– Be data driven, no dogma, produce insights
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Actionable Measurement Data

• You want to find answers to questions like

– What is my workload doing?

– Where is it spending time?

– What are the bottlenecks (CPU, I/O)?

– Why do I measure the {latency/throughput} that I 

measure?

• Why not 10x better?
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Measuring Spark

• Distributed system, parallel architecture

– Many components, complexity increases when running at scale

– Optimizing a component does not necessarily optimize the whole
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Spark and Monitoring Tools

• Spark instrumentation
– Web UI

– REST API

– Eventlog

– Executor/Task Metrics

– Dropwizard metrics library

• Complement with
– OS tools

– For large clusters, deploy tools that ease working at cluster-level

• https://spark.apache.org/docs/latest/monitoring.html
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Web UI

• Info on Jobs, Stages, Executors, Metrics, SQL,..

– Start with: point web browser driver_host, port 4040
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Execution Plans and DAGs

17#EUdev2



Web UI Event Timeline

• Event Timeline 

– show task execution details by activity and time
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REST API – Spark Metrics

• History server URL + /api/v1/applications

• http://historyserver:18080/api/v1/applicati

ons/application_1507881680808_0002/s

tages
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http://historyserver:18080/api/v1/applications/application_1507881680808_0002/stages


EventLog – Stores Web UI History

• Config:

– spark.eventLog.enabled=true

– spark.eventLog.dir = <path>

• JSON files store info displayed by Spark History server

– You can read the JSON files with Spark task metrics and history with 

custom applications. For example sparklint. 

– You can read and analyze event log files using the Dataframe API with 

the Spark SQL JSON reader. More details at: 

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Notes
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Spark Executor Task Metrics
val df = spark.read.json("/user/spark/applicationHistory/application_...")

df.filter("Event='SparkListenerTaskEnd'").select("Task Metrics.*").printSchema
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Task ID: long (nullable = true)

|-- Disk Bytes Spilled: long (nullable = true)

|-- Executor CPU Time: long (nullable = true)

|-- Executor Deserialize CPU Time: long (nullable = true)

|-- Executor Deserialize Time: long (nullable = true)

|-- Executor Run Time: long (nullable = true)

|-- Input Metrics: struct (nullable = true)

|    |-- Bytes Read: long (nullable = true)

|    |-- Records Read: long (nullable = true)

|-- JVM GC Time: long (nullable = true)

|-- Memory Bytes Spilled: long (nullable = true)

|-- Output Metrics: struct (nullable = true)

|    |-- Bytes Written: long (nullable = true)

|    |-- Records Written: long (nullable = true)

|-- Result Serialization Time: long (nullable = true)

|-- Result Size: long (nullable = true)

|-- Shuffle Read Metrics: struct (nullable = true)

|    |-- Fetch Wait Time: long (nullable = true)

|    |-- Local Blocks Fetched: long (nullable = true)

|    |-- Local Bytes Read: long (nullable = true)

|    |-- Remote Blocks Fetched: long (nullable = true)

|    |-- Remote Bytes Read: long (nullable = true)

|    |-- Total Records Read: long (nullable = true)

|-- Shuffle Write Metrics: struct (nullable = true)

|    |-- Shuffle Bytes Written: long (nullable = true)

|    |-- Shuffle Records Written: long (nullable = true)

|    |-- Shuffle Write Time: long (nullable = true)

|-- Updated Blocks: array (nullable = true)

.. ..

Spark Internal Task metrics:

Provide info on executors’ activity:

Run time, CPU time used, I/O metrics, 

JVM Garbage Collection, Shuffle 

activity, etc.



Task Info, Accumulables, SQL Metrics

df.filter("Event='SparkListenerTaskEnd'").select("Task Info.*").printSchema

root

|-- Accumulables: array (nullable = true)

|    |-- element: struct (containsNull = true)

|    |    |-- ID: long (nullable = true)

|    |    |-- Name: string (nullable = true)

|    |    |-- Value: string (nullable = true)

|    |    | . . .

|-- Attempt: long (nullable = true)

|-- Executor ID: string (nullable = true)

|-- Failed: boolean (nullable = true)

|-- Finish Time: long (nullable = true)

|-- Getting Result Time: long (nullable = true)

|-- Host: string (nullable = true)

|-- Index: long (nullable = true)

|-- Killed: boolean (nullable = true)

|-- Launch Time: long (nullable = true)

|-- Locality: string (nullable = true)

|-- Speculative: boolean (nullable = true)

|-- Task ID: long (nullable = true)
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Details about the Task:

Launch Time, Finish 

Time, Host, Locality, etc

Accumulables are used 

to keep accounting of 

metrics updates, 

including SQL metrics



EventLog Analytics Using Spark SQL
Aggregate stage info metrics by name and display sum(values):

scala> spark.sql("select Name, sum(Value) as value from 

aggregatedStageMetrics group by Name order by Name").show(40,false)

+---------------------------------------------------+----------------+

|Name |value |

+---------------------------------------------------+----------------+

|aggregate time total (min, med, max)               |1230038.0       |

|data size total (min, med, max)                    |5.6000205E7     |

|duration total (min, med, max)                     |3202872.0       |

|number of output rows                              |2.504759806E9   | 

|internal.metrics.executorRunTime |857185.0        | 

|internal.metrics.executorCpuTime |1.46231111372E11| 

|...                                                |...             |
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Drill Down Into Executor Task Metrics

Relevant code in Apache Spark - Core

– Example snippets, show instrumentation in Executor.scala

– Note, for SQL metrics, see instrumentation with code-generation 
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Read Metrics with sparkMeasure
sparkMeasure is a tool for performance investigations of Apache Spark 
workloads https://github.com/LucaCanali/sparkMeasure

$ bin/spark-shell --packages ch.cern.sparkmeasure:spark-measure_2.11:0.11

scala> val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark) 

scala> stageMetrics.runAndMeasure(spark.sql("select count(*) from 
range(1000) cross join range(1000) cross join range(1000)").show)

Scheduling mode = FIFO

Spark Context default degree of parallelism = 8

Aggregated Spark stage metrics:

numStages => 3

sum(numTasks) => 17

elapsedTime => 9103 (9 s)

sum(stageDuration) => 9027 (9 s)

sum(executorRunTime) => 69238 (1.2 min)

sum(executorCpuTime) => 68004 (1.1 min)

. . . <more metrics>
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https://github.com/LucaCanali/sparkMeasure


Notebooks and sparkMeasure
• Interactive use: suitable for 

notebooks and REPL

• Offline use: save metrics for 

later analysis

• Metrics granularity: 

collected per stage or 

record all tasks

• Metrics aggregation: user-

defined, e.g. per SQL 

statement

• Works with Scala and 

Python
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Collecting Info Using Spark Listener
- Spark Listeners
are used to send 
task metrics from 
executors to driver

- Underlying data 
transport used by 
WebUI,  
sparkMeasure, etc

- Spark Listeners for 
your custom 
monitoring code
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Examples – Parquet I/O

• An example of how to measure I/O, Spark reading Apache 
Parquet files

• This causes a full scan of the table store_sales

spark.sql("select * from store_sales where ss_sales_price=-1.0") 
.collect()

• Test run on a cluster of 12 nodes, with 12 executors, 4 cores each

• Total Time Across All Tasks: 59 min

• Locality Level Summary: Node local: 1675

• Input Size / Records: 185.3 GB / 4319943621

• Duration: 1.3 min 
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Parquet I/O – Filter Push Down

• Parquet filter push down in action

• This causes a full scan of the table store_sales with a filter 
condition pushed down

spark.sql("select * from store_sales where ss_quantity=-1.0") 
.collect()

• Test run on a cluster of 12 nodes, with 12 executors, 4 cores each

• Total Time Across All Tasks: 1.0 min 

• Locality Level Summary: Node local: 1675 

• Input Size / Records: 16.2 MB / 0

• Duration: 3 s
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Parquet I/O – Drill Down

• Parquet filter push down
– I/O reduction when Parquet pushed down a filter condition and using 

stats on data (min, max, num values, num nulls)

– Filter push down not available for decimal data type 
(ss_sales_price)

https://db-blog.web.cern.ch/blog/luca-canali/2017-06-diving-spark-and-parquet-workloads-example
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CPU and I/O Reading Parquet Files

# echo 3 > /proc/sys/vm/drop_caches # drop the filesystem cache

$ bin/spark-shell --master local[1] --packages ch.cern.sparkmeasure:spark-
measure_2.11:0.11 --driver-memory 16g

val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark) 

stageMetrics.runAndMeasure(spark.sql("select * from web_sales
where ws_sales_price=-1").collect())

Spark Context default degree of parallelism = 1
Aggregated Spark stage metrics:
numStages => 1
sum(numTasks) => 787
elapsedTime => 465430 (7.8 min)
sum(stageDuration) => 465430 (7.8 min)
sum(executorRunTime) => 463966 (7.7 min)
sum(executorCpuTime) => 325077 (5.4 min)

sum(jvmGCTime) => 3220 (3 s)
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CPU time is 70% of run time

Note: OS tools confirm that the 

difference “Run”- “CPU” time is 

spent in read calls (used a 

SystemTap script)  



Stack Profiling and Flame Graphs
- Use stack profiling to 

investigate CPU usage

- Flame graph 

visualization to help 

identify “hot methods” 

and context (parent 

stack)

- Use profilers that 

don’t suffer from Java 

Safepoint bias, e.g. 

async-profiler
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https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Linux_FlameGraph.md

https://github.com/jvm-profiling-tools/async-profiler


How Does Your Workload Scale?
Measure latency as function of 
N# of concurrent tasks

Example workload: Spark 
reading Parquet files from 
memory

Speedup(p) = R(1)/R(p)

Speedup grows linearly in 
ideal case. Saturation effects 
and serialization reduce 
scalability 

(see also Amdhal’s law)
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Are CPUs Processing Instructions or 

Stalling for Memory?
• Measure Instructions per Cycle (IPC) and CPU-to-Memory throughput

• Minimizing CPU stalled cycles is key on modern platforms

• Tools to read CPU HW counters: perf and more
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_Memory_Perf_Measure.md
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Increasing N# of stalled 

cycles at high load 

CPU-to-memory throughput close 

to saturation for this system



Lessons Learned – Measuring CPU

• Reading Parquet data is CPU-intensive
– Measured throughput for the test system at high load (using all 20 cores)

• about 3 GB/s – max read throughput with lightweight processing of parquet files

– Measured CPU-to-memory traffic at high load ~80 GB/s

• Comments:
– CPU utilization and memory throughput are the bottleneck in this test

• Other systems could have I/O or network bottlenecks at lower throughput

– Room for optimizations in the Parquet reader code?

https://db-blog.web.cern.ch/blog/luca-canali/2017-09-performance-analysis-cpu-intensive-workload-apache-spark
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Pitfalls: CPU Utilization at High Load
• Physical cores vs. threads

– CPU utilization grows up to the number of available threads

– Throughput at scale mostly limited by number of available cores

– Pitfall: understanding Hyper-threading on multitenant systems
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Metric
20 concurrent 
tasks

40 concurrent 
tasks

60 concurrent 
tasks

Elapsed time 20 s 23 s 23 s

Executor run time 392 s 892 s 1354 s

Executor CPU Time 376 s 849 s 872 s

CPU-memory data volume 1.6 TB 2.2 TB 2.2 TB

CPU-memory throughput 85 GB/s 90 GB/s 90 GB/s

IPC 1.42 0.66 0.63

Job latency is roughly constant

20 tasks -> each task gets a core

40 tasks -> they share CPU cores

It is as if CPU speed has become

2 times slower

Extra time from CPU runqueue wait

Example data: CPU-bound workload (reading Parquet files from memory)

Test system has 20 physical cores



Lessons Learned on Garbage 

Collection and CPU Usage
Measure: reading Parquet Table with “--driver-memory 1g” (default)

sum(executorRunTime) => 468480 (7.8 min)

sum(executorCpuTime) => 304396 (5.1 min)

sum(jvmGCTime) => 163641 (2.7 min)

OS tools: (ps -efo cputime -p <pid_of_SparkSubmit>) 

CPU time = 2306 sec

Lessons learned: 

• Use OS tools to measure CPU used by JVM

• Garbage Collection is memory hungry (size your executors accordingly)
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Run Time = 

CPU Time (executor) +  JVM GC

Many CPU cycles used by JVM, extra CPU time 

not accounted in Spark metrics due to GC



Performance at Scale: Keep 

Systems Resources Busy
Running tasks in parallel 

is key for performance

Important loss of 

efficiency when the 

number of concurrent 

active tasks << available 

cores
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Issues With Stragglers

• Slow running tasks - stragglers
– Many causes possible, including

– Tasks running on slow/busy nodes

– Nodes with HW problems

– Skew in data and/or partitioning 

• A few “local” slow tasks can wreck havoc in global perf
– It is often the case that one stage needs to finish before the next 

one can start 

– See also discussion in SPARK-2387 on stage barriers

– Just a few slow tasks can slow everything down
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Investigate Stragglers With Analytics 

on “Task Info” Data
Example of performance 

limited by long tail and 

stragglers

Data source: EventLog or 

sparkMeasure (from task info: 

task launch and finish time)

Data analyzed using Spark 

SQL and notebooks
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From https://db-blog.web.cern.ch/blog/luca-canali/2017-03-measuring-apache-spark-workload-metrics-performance-troubleshooting



Task Stragglers – Drill Down 
Drill down on task latency per 
executor:

it’s a plot with 3 dimensions

Stragglers due to a few 
machines in the cluster:

later identified as slow HW

Lessons learned: identify and 
remove/repair non-performing 
hardware from the cluster 
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From https://github.com/LucaCanali/sparkMeasure/blob/master/examples/SparkTaskMetricsAnalysisExample.ipynb



Web UI – Monitor Executors 

• The Web UI shows details of executors

– Including number of active tasks (+ per-node info)
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All OK: 480 cores allocated and 480 active tasks



Example of Underutilization 

• Monitor active tasks with Web UI
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Utilization is low at this snapshot: 

480 cores allocated and 48 active tasks



Visualize the Number of Active Tasks

• Plot as function of time to identify possible under-utilization

– Grafana visualization of number of active tasks for a benchmark job running on 

60 executors, 480 cores
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Data source: 

/executor/threadpool/

activeTasks

Transport: Dropwizard

metrics to Graphite sink



Measure the Number of Active Tasks 

With Dropwizard Metrics Library
• The Dropwizard metrics library is integrated with Spark

– Provides configurable data sources and sinks. Details in doc and config file 

“metrics.properties”

--conf spark.metrics.conf=metrics.properties

• Spark data sources:

– Can be optional, as the JvmSource or “on by default”, as the executor source

– Notably the gauge: /executor/threadpool/activeTasks

– Note: executor source also has info on I/O

• Architecture

– Metrics are sent directly by each executor -> no need to pass via the driver.

– More details: see source code “ExecutorSource.scala”

45#EUdev2



Limitations and Future Work
• Many important topics not covered here

– Such as investigations and optimization of shuffle operations, SQL plans, etc

– Understanding root causes of stragglers, long tails and issues related to efficient 

utilization of available cores/resources can be hard

• Current tools to measure Spark performance are very useful.. but:

– Instrumentation does not yet provide a way to directly find bottlenecks

• Identify where time is spent and critical resources for job latency 

• See Kay Ousterhout on “Re-Architecting Spark For Performance Understandability”

– Currently difficult to link measurements of OS metrics and Spark metrics

• Difficult to understand time spent for HDFS I/O (see HADOOP-11873)

– Improvements on user-facing tools

• Currently investigating linking Spark executor metrics sources and Dropwizard

sink/Grafana visualization (see SPARK-22190) 
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https://issues.apache.org/jira/browse/HADOOP-11873
https://issues.apache.org/jira/browse/SPARK-22190


Conclusions

• Think clearly about performance
– Approach it as a problem in experimental science

– Measure – build models – test – produce actionable results

• Know your tools
– Experiment with the toolset – active benchmarking to understand 

how your application works – know the tools’ limitations

• Measure, build tools and share results!
– Spark performance is a field of great interest

– Many gains to be made + a rapidly developing topic
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