
Luca Canali, CERN

Apache Spark Performance

Troubleshooting at Scale:

Challenges, Tools and Methods

#EUdev2

About Luca

• Computing engineer and team lead at CERN IT

– Hadoop and Spark service, database services

– Joined CERN in 2005

• 17+ years of experience with database services

– Performance, architecture, tools, internals

– Sharing information: blog, notes, code

• @LucaCanaliDB – http://cern.ch/canali

2#EUdev2

CERN and the Large Hadron Collider

• Largest and most powerful particle accelerator

3#EUdev2

Apache Spark @

• Spark is a popular component for data processing

– Deployed on four production Hadoop/YARN clusters

• Aggregated capacity (2017): ~1500 physical cores, 11 PB

– Adoption is growing. Key projects involving Spark:

• Analytics for accelerator controls and logging

• Monitoring use cases, this includes use of Spark streaming

• Analytics on aggregated logs

• Explorations on the use of Spark for high energy physics

Link: http://cern.ch/canali/docs/BigData_Solutions_at_CERN_KT_Forum_20170929.pdf

4#EUdev2

Motivations for This Work

• Understanding Spark workloads

– Understanding technology (where are the bottlenecks, how

much do Spark jobs scale, etc?)

– Capacity planning: benchmark platforms

• Provide our users with a range of monitoring tools

• Measurements and troubleshooting Spark SQL

– Structured data in Parquet for data analytics

– Spark-ROOT (project on using Spark for physics data)

5#EUdev2

Outlook of This Talk

• Topic is vast, I will just share some ideas and

lessons learned

• How to approach performance troubleshooting,

benchmarking and relevant methods

• Data sources and tools to measure Spark

workloads, challenges at scale

• Examples and lessons learned with some key tools

6#EUdev2

Challenges

• Just measuring performance metrics is easy

• Producing actionable insights requires effort and
preparation
– Methods on how to approach troubleshooting performance

– How to gather relevant data

• Need to use the right tools, possibly many tools

• Be aware of the limitations of your tools

– Know your product internals: there are many “moving parts”

– Model and understand root causes from effects

7#EUdev2

Anti-Pattern: The Marketing

Benchmark

• The over-simplified

benchmark graph

• Does not tell you why B

is better than A

• To understand, you need

more context and root

cause analysis

8#EUdev2

0

2

4

6

8

10

12

System A System B

S
O

M
E

 M
E

T
R

IC
 (

H
IG

H
E

R
 I
S

 B
E

T
T

E
R

)

System B is 5x better

than System A !?

Benchmark for Speed

• Which one is faster?

• 20x 10x 1x

9#EUdev2

Adapt Answer to Circumstances

• Which one is faster?

• 20x 10x 1x

• Actually, it depends..

10#EUdev2

Active Benchmarking
• Example: use TPC-DS benchmark as workload generator

– Understand and measure Spark SQL, optimizations, systems performance, etc

11#EUdev2

0

500

1000

1500

2000

2500

3000

qSs…

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

L
a

te
n

c
y
)

in

s
e

c
o

n
d

s

Query

TPCDS W O RKLOAD - DATA SET S I ZE: 10 TB - Q UERY SET V1 . 4
420 CO RES, EXECUTO R M EM ORY PER CO RE 5G

 MIN_Exec MAX_Exec AVG_Exec_Time_sec

Troubleshooting by Understanding

• Measure the workload
– Use all relevant tools

– Not a “black box”: instrument code where is needed

• Be aware of the blind spots
– Missing tools, measurements hard to get, etc

• Make a mental model
– Explain the observed performance and bottlenecks

– Prove it or disprove it with experiment

• Summary:
– Be data driven, no dogma, produce insights

12#EUdev2

Actionable Measurement Data

• You want to find answers to questions like

– What is my workload doing?

– Where is it spending time?

– What are the bottlenecks (CPU, I/O)?

– Why do I measure the {latency/throughput} that I

measure?

• Why not 10x better?

13#EUdev2

Measuring Spark

• Distributed system, parallel architecture

– Many components, complexity increases when running at scale

– Optimizing a component does not necessarily optimize the whole

14#EUdev2

Spark and Monitoring Tools

• Spark instrumentation
– Web UI

– REST API

– Eventlog

– Executor/Task Metrics

– Dropwizard metrics library

• Complement with
– OS tools

– For large clusters, deploy tools that ease working at cluster-level

• https://spark.apache.org/docs/latest/monitoring.html

15#EUdev2

Web UI

• Info on Jobs, Stages, Executors, Metrics, SQL,..

– Start with: point web browser driver_host, port 4040

16#EUdev2

Execution Plans and DAGs

17#EUdev2

Web UI Event Timeline

• Event Timeline

– show task execution details by activity and time

18#EUdev2

REST API – Spark Metrics

• History server URL + /api/v1/applications

• http://historyserver:18080/api/v1/applicati

ons/application_1507881680808_0002/s

tages

19#EUdev2

http://historyserver:18080/api/v1/applications/application_1507881680808_0002/stages

EventLog – Stores Web UI History

• Config:

– spark.eventLog.enabled=true

– spark.eventLog.dir = <path>

• JSON files store info displayed by Spark History server

– You can read the JSON files with Spark task metrics and history with

custom applications. For example sparklint.

– You can read and analyze event log files using the Dataframe API with

the Spark SQL JSON reader. More details at:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Notes

20#EUdev2

Spark Executor Task Metrics
val df = spark.read.json("/user/spark/applicationHistory/application_...")

df.filter("Event='SparkListenerTaskEnd'").select("Task Metrics.*").printSchema

21#EUdev2

Task ID: long (nullable = true)

|-- Disk Bytes Spilled: long (nullable = true)

|-- Executor CPU Time: long (nullable = true)

|-- Executor Deserialize CPU Time: long (nullable = true)

|-- Executor Deserialize Time: long (nullable = true)

|-- Executor Run Time: long (nullable = true)

|-- Input Metrics: struct (nullable = true)

| |-- Bytes Read: long (nullable = true)

| |-- Records Read: long (nullable = true)

|-- JVM GC Time: long (nullable = true)

|-- Memory Bytes Spilled: long (nullable = true)

|-- Output Metrics: struct (nullable = true)

| |-- Bytes Written: long (nullable = true)

| |-- Records Written: long (nullable = true)

|-- Result Serialization Time: long (nullable = true)

|-- Result Size: long (nullable = true)

|-- Shuffle Read Metrics: struct (nullable = true)

| |-- Fetch Wait Time: long (nullable = true)

| |-- Local Blocks Fetched: long (nullable = true)

| |-- Local Bytes Read: long (nullable = true)

| |-- Remote Blocks Fetched: long (nullable = true)

| |-- Remote Bytes Read: long (nullable = true)

| |-- Total Records Read: long (nullable = true)

|-- Shuffle Write Metrics: struct (nullable = true)

| |-- Shuffle Bytes Written: long (nullable = true)

| |-- Shuffle Records Written: long (nullable = true)

| |-- Shuffle Write Time: long (nullable = true)

|-- Updated Blocks: array (nullable = true)

.. ..

Spark Internal Task metrics:

Provide info on executors’ activity:

Run time, CPU time used, I/O metrics,

JVM Garbage Collection, Shuffle

activity, etc.

Task Info, Accumulables, SQL Metrics

df.filter("Event='SparkListenerTaskEnd'").select("Task Info.*").printSchema

root

|-- Accumulables: array (nullable = true)

| |-- element: struct (containsNull = true)

| | |-- ID: long (nullable = true)

| | |-- Name: string (nullable = true)

| | |-- Value: string (nullable = true)

| | | . . .

|-- Attempt: long (nullable = true)

|-- Executor ID: string (nullable = true)

|-- Failed: boolean (nullable = true)

|-- Finish Time: long (nullable = true)

|-- Getting Result Time: long (nullable = true)

|-- Host: string (nullable = true)

|-- Index: long (nullable = true)

|-- Killed: boolean (nullable = true)

|-- Launch Time: long (nullable = true)

|-- Locality: string (nullable = true)

|-- Speculative: boolean (nullable = true)

|-- Task ID: long (nullable = true)

22#EUdev2

Details about the Task:

Launch Time, Finish

Time, Host, Locality, etc

Accumulables are used

to keep accounting of

metrics updates,

including SQL metrics

EventLog Analytics Using Spark SQL
Aggregate stage info metrics by name and display sum(values):

scala> spark.sql("select Name, sum(Value) as value from

aggregatedStageMetrics group by Name order by Name").show(40,false)

+---+----------------+

|Name |value |

+---+----------------+

|aggregate time total (min, med, max) |1230038.0 |

|data size total (min, med, max) |5.6000205E7 |

|duration total (min, med, max) |3202872.0 |

|number of output rows |2.504759806E9 |

|internal.metrics.executorRunTime |857185.0 |

|internal.metrics.executorCpuTime |1.46231111372E11|

|... |... |

23#EUdev2

Drill Down Into Executor Task Metrics

Relevant code in Apache Spark - Core

– Example snippets, show instrumentation in Executor.scala

– Note, for SQL metrics, see instrumentation with code-generation

24#EUdev2

Read Metrics with sparkMeasure
sparkMeasure is a tool for performance investigations of Apache Spark
workloads https://github.com/LucaCanali/sparkMeasure

$ bin/spark-shell --packages ch.cern.sparkmeasure:spark-measure_2.11:0.11

scala> val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)

scala> stageMetrics.runAndMeasure(spark.sql("select count(*) from
range(1000) cross join range(1000) cross join range(1000)").show)

Scheduling mode = FIFO

Spark Context default degree of parallelism = 8

Aggregated Spark stage metrics:

numStages => 3

sum(numTasks) => 17

elapsedTime => 9103 (9 s)

sum(stageDuration) => 9027 (9 s)

sum(executorRunTime) => 69238 (1.2 min)

sum(executorCpuTime) => 68004 (1.1 min)

. . . <more metrics>

25#EUdev2

https://github.com/LucaCanali/sparkMeasure

Notebooks and sparkMeasure
• Interactive use: suitable for

notebooks and REPL

• Offline use: save metrics for

later analysis

• Metrics granularity:

collected per stage or

record all tasks

• Metrics aggregation: user-

defined, e.g. per SQL

statement

• Works with Scala and

Python

26#EUdev2

Collecting Info Using Spark Listener
- Spark Listeners
are used to send
task metrics from
executors to driver

- Underlying data
transport used by
WebUI,
sparkMeasure, etc

- Spark Listeners for
your custom
monitoring code

27#EUdev2

Examples – Parquet I/O

• An example of how to measure I/O, Spark reading Apache
Parquet files

• This causes a full scan of the table store_sales

spark.sql("select * from store_sales where ss_sales_price=-1.0")
.collect()

• Test run on a cluster of 12 nodes, with 12 executors, 4 cores each

• Total Time Across All Tasks: 59 min

• Locality Level Summary: Node local: 1675

• Input Size / Records: 185.3 GB / 4319943621

• Duration: 1.3 min

28#EUdev2

Parquet I/O – Filter Push Down

• Parquet filter push down in action

• This causes a full scan of the table store_sales with a filter
condition pushed down

spark.sql("select * from store_sales where ss_quantity=-1.0")
.collect()

• Test run on a cluster of 12 nodes, with 12 executors, 4 cores each

• Total Time Across All Tasks: 1.0 min

• Locality Level Summary: Node local: 1675

• Input Size / Records: 16.2 MB / 0

• Duration: 3 s

29#EUdev2

Parquet I/O – Drill Down

• Parquet filter push down
– I/O reduction when Parquet pushed down a filter condition and using

stats on data (min, max, num values, num nulls)

– Filter push down not available for decimal data type
(ss_sales_price)

https://db-blog.web.cern.ch/blog/luca-canali/2017-06-diving-spark-and-parquet-workloads-example

30#EUdev2

CPU and I/O Reading Parquet Files

echo 3 > /proc/sys/vm/drop_caches # drop the filesystem cache

$ bin/spark-shell --master local[1] --packages ch.cern.sparkmeasure:spark-
measure_2.11:0.11 --driver-memory 16g

val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)

stageMetrics.runAndMeasure(spark.sql("select * from web_sales
where ws_sales_price=-1").collect())

Spark Context default degree of parallelism = 1
Aggregated Spark stage metrics:
numStages => 1
sum(numTasks) => 787
elapsedTime => 465430 (7.8 min)
sum(stageDuration) => 465430 (7.8 min)
sum(executorRunTime) => 463966 (7.7 min)
sum(executorCpuTime) => 325077 (5.4 min)

sum(jvmGCTime) => 3220 (3 s)

31#EUdev2

CPU time is 70% of run time

Note: OS tools confirm that the

difference “Run”- “CPU” time is

spent in read calls (used a

SystemTap script)

Stack Profiling and Flame Graphs
- Use stack profiling to

investigate CPU usage

- Flame graph

visualization to help

identify “hot methods”

and context (parent

stack)

- Use profilers that

don’t suffer from Java

Safepoint bias, e.g.

async-profiler

32#EUdev2

https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Linux_FlameGraph.md

https://github.com/jvm-profiling-tools/async-profiler

How Does Your Workload Scale?
Measure latency as function of
N# of concurrent tasks

Example workload: Spark
reading Parquet files from
memory

Speedup(p) = R(1)/R(p)

Speedup grows linearly in
ideal case. Saturation effects
and serialization reduce
scalability

(see also Amdhal’s law)

33#EUdev2

Are CPUs Processing Instructions or

Stalling for Memory?
• Measure Instructions per Cycle (IPC) and CPU-to-Memory throughput

• Minimizing CPU stalled cycles is key on modern platforms

• Tools to read CPU HW counters: perf and more
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_Memory_Perf_Measure.md

34#EUdev2

Increasing N# of stalled

cycles at high load

CPU-to-memory throughput close

to saturation for this system

Lessons Learned – Measuring CPU

• Reading Parquet data is CPU-intensive
– Measured throughput for the test system at high load (using all 20 cores)

• about 3 GB/s – max read throughput with lightweight processing of parquet files

– Measured CPU-to-memory traffic at high load ~80 GB/s

• Comments:
– CPU utilization and memory throughput are the bottleneck in this test

• Other systems could have I/O or network bottlenecks at lower throughput

– Room for optimizations in the Parquet reader code?

https://db-blog.web.cern.ch/blog/luca-canali/2017-09-performance-analysis-cpu-intensive-workload-apache-spark

35#EUdev2

Pitfalls: CPU Utilization at High Load
• Physical cores vs. threads

– CPU utilization grows up to the number of available threads

– Throughput at scale mostly limited by number of available cores

– Pitfall: understanding Hyper-threading on multitenant systems

36#EUdev2

Metric
20 concurrent
tasks

40 concurrent
tasks

60 concurrent
tasks

Elapsed time 20 s 23 s 23 s

Executor run time 392 s 892 s 1354 s

Executor CPU Time 376 s 849 s 872 s

CPU-memory data volume 1.6 TB 2.2 TB 2.2 TB

CPU-memory throughput 85 GB/s 90 GB/s 90 GB/s

IPC 1.42 0.66 0.63

Job latency is roughly constant

20 tasks -> each task gets a core

40 tasks -> they share CPU cores

It is as if CPU speed has become

2 times slower

Extra time from CPU runqueue wait

Example data: CPU-bound workload (reading Parquet files from memory)

Test system has 20 physical cores

Lessons Learned on Garbage

Collection and CPU Usage
Measure: reading Parquet Table with “--driver-memory 1g” (default)

sum(executorRunTime) => 468480 (7.8 min)

sum(executorCpuTime) => 304396 (5.1 min)

sum(jvmGCTime) => 163641 (2.7 min)

OS tools: (ps -efo cputime -p <pid_of_SparkSubmit>)

CPU time = 2306 sec

Lessons learned:

• Use OS tools to measure CPU used by JVM

• Garbage Collection is memory hungry (size your executors accordingly)

37#EUdev2

Run Time =

CPU Time (executor) + JVM GC

Many CPU cycles used by JVM, extra CPU time

not accounted in Spark metrics due to GC

Performance at Scale: Keep

Systems Resources Busy
Running tasks in parallel

is key for performance

Important loss of

efficiency when the

number of concurrent

active tasks << available

cores

38#EUdev2

Issues With Stragglers

• Slow running tasks - stragglers
– Many causes possible, including

– Tasks running on slow/busy nodes

– Nodes with HW problems

– Skew in data and/or partitioning

• A few “local” slow tasks can wreck havoc in global perf
– It is often the case that one stage needs to finish before the next

one can start

– See also discussion in SPARK-2387 on stage barriers

– Just a few slow tasks can slow everything down

39#EUdev2

Investigate Stragglers With Analytics

on “Task Info” Data
Example of performance

limited by long tail and

stragglers

Data source: EventLog or

sparkMeasure (from task info:

task launch and finish time)

Data analyzed using Spark

SQL and notebooks

40#EUdev2

From https://db-blog.web.cern.ch/blog/luca-canali/2017-03-measuring-apache-spark-workload-metrics-performance-troubleshooting

Task Stragglers – Drill Down
Drill down on task latency per
executor:

it’s a plot with 3 dimensions

Stragglers due to a few
machines in the cluster:

later identified as slow HW

Lessons learned: identify and
remove/repair non-performing
hardware from the cluster

41#EUdev2

From https://github.com/LucaCanali/sparkMeasure/blob/master/examples/SparkTaskMetricsAnalysisExample.ipynb

Web UI – Monitor Executors

• The Web UI shows details of executors

– Including number of active tasks (+ per-node info)

42#EUdev2

All OK: 480 cores allocated and 480 active tasks

Example of Underutilization

• Monitor active tasks with Web UI

43#EUdev2

Utilization is low at this snapshot:

480 cores allocated and 48 active tasks

Visualize the Number of Active Tasks

• Plot as function of time to identify possible under-utilization

– Grafana visualization of number of active tasks for a benchmark job running on

60 executors, 480 cores

44#EUdev2

Data source:

/executor/threadpool/

activeTasks

Transport: Dropwizard

metrics to Graphite sink

Measure the Number of Active Tasks

With Dropwizard Metrics Library
• The Dropwizard metrics library is integrated with Spark

– Provides configurable data sources and sinks. Details in doc and config file

“metrics.properties”

--conf spark.metrics.conf=metrics.properties

• Spark data sources:

– Can be optional, as the JvmSource or “on by default”, as the executor source

– Notably the gauge: /executor/threadpool/activeTasks

– Note: executor source also has info on I/O

• Architecture

– Metrics are sent directly by each executor -> no need to pass via the driver.

– More details: see source code “ExecutorSource.scala”

45#EUdev2

Limitations and Future Work
• Many important topics not covered here

– Such as investigations and optimization of shuffle operations, SQL plans, etc

– Understanding root causes of stragglers, long tails and issues related to efficient

utilization of available cores/resources can be hard

• Current tools to measure Spark performance are very useful.. but:

– Instrumentation does not yet provide a way to directly find bottlenecks

• Identify where time is spent and critical resources for job latency

• See Kay Ousterhout on “Re-Architecting Spark For Performance Understandability”

– Currently difficult to link measurements of OS metrics and Spark metrics

• Difficult to understand time spent for HDFS I/O (see HADOOP-11873)

– Improvements on user-facing tools

• Currently investigating linking Spark executor metrics sources and Dropwizard

sink/Grafana visualization (see SPARK-22190)

46#EUdev2

https://issues.apache.org/jira/browse/HADOOP-11873
https://issues.apache.org/jira/browse/SPARK-22190

Conclusions

• Think clearly about performance
– Approach it as a problem in experimental science

– Measure – build models – test – produce actionable results

• Know your tools
– Experiment with the toolset – active benchmarking to understand

how your application works – know the tools’ limitations

• Measure, build tools and share results!
– Spark performance is a field of great interest

– Many gains to be made + a rapidly developing topic

47#EUdev2

Acknowledgements and References

• CERN
– Members of Hadoop and Spark service and CERN+HEP

users community

– Special thanks to Zbigniew Baranowski, Prasanth Kothuri,
Viktor Khristenko, Kacper Surdy

– Many lessons learned over the years from the RDBMS
community, notably www.oaktable.net

• Relevant links
– Material by Brendan Gregg (www.brendangregg.com)

– More info: links to blog and notes at http://cern.ch/canali

48#EUdev2

http://www.oaktable.net/
http://www.brendangregg.com/
http://cern.ch/canali

