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About Luca

« Computing engineer and team lead at CERN IT

— Hadoop and Spark service, database services
— Joined CERN in 2005

« 17+ years of experience with database services
— Performance, architecture, tools, internals
— Sharing information: blog, notes, code

- 9 @LucaCanaliDB - http://cern.ch/canali
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CERN and the Large Hadron Collider

« Largest and most powerful particle accelerator
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Higgs boson-like particle discoveryﬂ1
claimed at LHC

B3 COMMENTS (1665)

By Paul Rincon
Science editor, BBC News website, Geneva

The moment when Cemn director Rolf Heuer confirmed the Higgs results

Cern scientists reporting from the Large Hadron Collider (LHC) Rel
have claimed the discovery of a new particle consistent with the elaf
Higgs boson.
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Apache Spark @ f_)/

e Spark is a popular component for data processing

— Deployed on four production Hadoop/YARN clusters
« Aggregated capacity (2017): ~1500 physical cores, 11 PB
— Adoption is growing. Key projects involving Spark:
» Analytics for accelerator controls and logging
* Monitoring use cases, this includes use of Spark streaming
» Analytics on aggregated logs

« Explorations on the use of Spark for high energy physics
Link: http://cern.ch/canali/docs/BigData_Solutions_at CERN_KT_Forum_20170929.pdf
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Motivations for This Work

« Understanding Spark workloads

— Understanding technology (where are the bottlenecks, how
much do Spark jobs scale, etc?)

— Capacity planning: benchmark platforms
* Provide our users with a range of monitoring tools

 Measurements and troubleshooting Spark SQL
— Structured data in Parquet for data analytics
— Spark-ROOT (project on using Spark for physics data)

SPARK SUMMIT
@ EUROPE 2017 #EUdev2 5



Outlook of This Talk

* Topic is vast, | will just share some ideas and
essons learned

* How to approach performance troubleshooting,
penchmarking and relevant methods

« Data sources and tools to measure Spark
workloads, challenges at scale

« Examples and lessons learned with some key tools

SPARK SUMMIT
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Challenges

« Just measuring performance metrics Is easy

* Producing actionable insights requires effort and
preparation
— Methods on how to approach troubleshooting performance

— How to gather relevant data
* Need to use the right tools, possibly many tools
« Be aware of the limitations of your tools

— Know your product internals: there are many “moving parts”
— Model and understand root causes from effects

SPARK SUMMIT
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Anti-Pattern: The Marketing
Benchmark

=
N

* The over-simplified
benchmark graph

« Does not tell you why B
IS better than A

e To understand, you need
more context and root
cause analysis

System B is 5x better
than System A 1?

[
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SOME METRIC (HIGHER IS BETTER)
N o

System A System B

o
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Benchmark for Speed

« Which one Is faster?

SSSSSSSSSSS
EEEEEEEEEE




Adapt Answer to Circumstances

« Which one Is faster?

e 0P |

~®
e 20X 10x
 Actually, it depends..
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Active Benchmarking

 Example: use TPC-DS benchmark as workload generator
— Understand and measure Spark SQL, optimizations, systems performance, etc

3000 TPCDS WORKLOAD - DATA SET SIZE: 10 TB - QUERY SET V1.4
420 CORES, EXECUTOR MEMORY PER CORE 5G
m m LB o 181

0 = El IH - m m E’ il Hl E! . I” L B Il [T m Ili m [ II ot B

Query
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Troubleshooting by Understanding

« Measure the workload
— Use all relevant tools
— Not a “black box”: instrument code where is needed

« Be aware of the blind spots
— Missing tools, measurements hard to get, etc

« Make a mental model

— Explain the observed performance and bottlenecks
— Prove it or disprove it with experiment

e Summary:
— Be data driven, no dogma, produce insights

SPARK SUMMIT
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Actionable Measurement Data

* You want to find answers to questions like
— What is my workload doing?
— Where is it spending time?
— What are the bottlenecks (CPU, 1/0)?

— Why do | measure the {latency/throughput} that |
measure?
* Why not 10x better?

SPARK SUMMIT
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Measuring Spark

 Distributed system, parallel architecture
— Many components, complexity increases when running at scale

— Optimizing a component does not necessarily optimize the whole
Worker Node

Executor | Cache

—
Driver ngmm / / — —

SparkContext Cluster Manager
Worker Node
¥ Executor | Cache
Task Task

SPARK SUMMIT
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Spark and Monitoring Tools

e Spark instrumentation
— Web UI
— REST API
— Eventlog
— Executor/Task Metrics
— Dropwizard metrics library

 Complement with
— OS tools
— For large clusters, deploy tools that ease working at cluster-level

» https://spark.apache.org/docs/latest/monitoring.html

SPARK SUMMIT
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Web UI

 Info on Jobs, Stages, Executors, Metrics, SQL,..

— Start with: point web browser driver_host, port 4040

SPQT 220

Jobs Stages

Stages for All Jobs

Active Stages: 7
Pending Stages: 7

Completed Stages: 347

Active Stages (7)

Stage Id ~
375

374
373
372
M
367

366

SPARK SUML....

EUROPE 2017

Description

benchmark q23b-v1.4
rdd at Query.scala:125

benchmark q23b+1.4
rdd at Query.scala:125

benchmark q23b-+v1.4
rdd at Query.scala:125

benchmark q23b+1.4
rdd at Query scala:125

benchmark q23b-+v1.4
rdd at Query.scala:125

benchmark q23bv1.4
rdd at Query scala:125

benchmark q23b-+v1.4
rdd at Query.scala:125

Environment

+details

+details

+details

+details

Executors SaL

(Kill)

(kill)

(kill)

(kill)

(kill)

(Kill)

(kill)

Submitted
2017/10/16 14:48:31

2017/10/16 14:48:31

2017/10/16 14:48:24

2017/10/16 14:48:31

2017/10/16 14:48:31

2017/10/16 14:48:24

2017/10/16 14:48:24

Duration Tasks: Succeeded/Total
Unknown 0/200
Unknown 0200
2s 0/787
2s 0/200
2s 0/200
9s 1468/1625
2%s 1377/1379
#EUdev2

Input

77GB

137.3GB

Output Shuffle Read

51.2 MB

95.4 MB

Spark shell application Ul

Shuffle Write

663 4 MB

264.7 GB
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Execution Plar

Details for Query 0

Submitted Time: 2017/06/06 11:19:49
Duration: 1.4 min
Succeeded Jobs: 3

Whole StageCodegen
1.10h (865 ms, 225 14.15)

Scan parguet
number of output rows: 4,319 843 5§21

scan time total (min, med, max):
1.03h {502 ms,2.0s,140s5)

Filter

| number of output rows: 0 |

InMemoryTable Scan
nurmber of output rows: 10000000

Vinole: odegen
14.3 5 (153 ma, 357 ma, &19 M)

Filter
number of output rows: 10000000

| Project |

Exchange

Jatn.8128 toxal (mn, med, max)
305.2 B (9.5

B e

Volo Stagec: n
BfETh (2ms, 1.8 m, 8.3 m)

SartMergeJoin

S al

Wnole StageCodegen
17.08 (348 ms, 552 ms, 565 ma)

Range
number of output rows: 10000000

| Project |

Filter
number of output rows: 10000000

Exchange

gata size total (min, med.
FESNR  E  S we

Whale st
25 {1 16T me SREROTIT

numbar of output rows: 250163712626

 Project |

HashAggregate

| Project |

number of output rows: 200
e )

5pil size {otal (min, 'med, max).

3705 (0.0, 0.0 B, 0.0 6)

23oregeie s tolal (min, med, max):

B e, 2 0 m, 85 )

| HashAggregate

number of outbut rows: 200

Poak memory [otal (min, med, max):

1740 B (266 0 KB, T360.0 KB, 1280.0 KB)
apil size total (min, med, max).

e R 0T T h]

2q9regate time ot (min, med, max):

EFI N0 ms, 1.8m 5.2 m)

d DAGSs

Details for Stage 1106 (Attempt 0)

Total Time Across All Tasks: 1.2 h

Locality Level Summary: Process local: 200

Shuffle Read: 60.2 GB/ 2357107158
Shuffle Write: 3.8 MB / 60480

~ DAG Visualization
Stage 1106
Exchange Exchange
[ ShuffiedRowRDD [4111] | ShuffledRowRDD [4116]
| rdd at Query.scala:125 rdd at Query scala:125
/'holeStageCodegen YVholeStageCodegen
MapPartitionsRDD QA112] MapPartitionsRDD ?117]
rdd at Query.scala:125 | rdd at Query.scala:125

\ / SortMergeJoin
’ ZippedPartitionsRDD2 [4118]
rdd at Query scala:125 )
WholeStageCodegen
Sy
MapPartitionsRDD g4119]
rad at Query.scala:125
Exchange

v

( MapPartitionsRDD [4120]

(3\ SPARK suMmIT
) EUROPE 2017

| TakeOrderedanderoject |

\rdd at Query.scala:125
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Web Ul Event Timeline

« Event Timeline
— show task executlon detalls by activity and tlme

Spn,-‘k‘ Jobs | Stages rage  Envi Spark shell 3

Details for Stage 3874 (Attempt 0)

1/'srvl - " cemch

3/°'grv3  .cemch

4/ srv4 cem.ch

3 E
3 3
EEEEEEEEEEE
o
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REST API — Spark Metrics

« History server URL + /api/v1l/applications
« http://historyserver:18080/api/vl/applicati

ons/application 1507881680808 0002/s

Save Copy

stageId:
attemptId:
numactiveTasks:
numCompleteTasks:
numFailedTasks:
executorRunTime:
executorCpuTime:
ubmissionTime:

tages

#EUdev2

(3\ SPARK suMmIT
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completionTime:
inputBytes:
inputRecords:
outputBytes:
outputRecords:
shuffleReadBytes:
shufflereadRecords:
shufflewriteBytes:
shufflewriteRecords:
memoryBytesspilled:
diskBytesspilled:
name:

b details:
schedulingPool:

[* accumulatorUpdates:

name :
value:

id:
name:
value:

’ status ‘

firstTaskLaunchedTime:

Headers

“COMPLETE"™
31e4

:]

a

787

:]

189461
81187958682
"2217-18-16T14:59:89  SE2GMT"™
"2817-18-16T1 !

7494573081

1879781415

e

e

a

e

715933

25ese

e

e

"rdd at Query.scala:125"
"org.apache.spark.sql.pat_Benchmarkable.scala:28)"
“default”

128174
"peak memory total (min, med, max)"
"2e86326548"

128231
"internal.metrics.executorDeserializeCpuTime™
"2459798772"

id:
name:
value:

128177
"number of output rows™
"1879566198" 19



http://historyserver:18080/api/v1/applications/application_1507881680808_0002/stages

EventLog — Stores Web Ul History

« Config:
— spark.eventlLog.enabled=true

— spark.eventLog.dir = <path>

« JSON files store info displayed by Spark History server

— You can read the JSON files with Spark task metrics and history with
custom applications. For example sparklint.

— You can read and analyze event log files using the Dataframe API with
the Spark SQL JSON reader. More details at:
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Notes

SPARK SUMMIT
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Spark Executor Task Metrics

val df = spark.read.json("/user/spark/applicationHistory/application ...")
df.filter ("Event='SparkListenerTaskEnd'") .select("Task Metrics.*") .printSchema

Task ID: long (nullable = true)
|-- Disk Bytes Spilled: long (nullable = true)

|-- Executor CPU Time: long (nullable = true)
| -- Executor Deserialize CPU Time: long (nullable = true) S k I t I T k t - .
| -- Executor Deserialize Time: long (nullable = true) par n erna aS llle rICS.
| -- Executor Run Time: long (nullable = true)

|-~ Tnput Metrics: struct (nuLlable - true Provide info on executors’ activity:

| |-- Bytes Read: long (nullable = true) ﬁ
| |-- Records Read: long (nullable = true) - - .

o v G mame: tong (htabie = trae) Run time, CPU time used, I/0O metrics,
|-- Memory Bytes Spilled: long (nullable = true) .
|-- Output Metrics: struct (nullable = true) JVM G b g C ” t Sh ffl

| |-- Bytes Written: long (nullable = true) ar a e O eC Ion’ u e
| | -— Records Written: long (nullable = true) . .
|-- Result Serialization Time: long (nullable = true) aCtIVIty’ etC_
|-- Result Size: long (nullable = true)

|-- Shuffle Read Metrics: struct (nullable = true)

| |-- Fetch Wait Time: long (nullable = true)

| |-- Local Blocks Fetched: long (nullable = true)
| |-- Local Bytes Read: long (nullable = true)

| | -— Remote Blocks Fetched: long (nullable = true)
| |-— Remote Bytes Read: long (nullable = true)

| |--— Total Records Read: long (nullable = true)
|
|
|
|

-- Shuffle Write Metrics: struct (nullable = true)
|-- Shuffle Bytes Written: long (nullable = true)
|-- Shuffle Records Written: long (nullable = true)
|-- Shuffle Write Time: long (nullable = true)

| -- Updated Blocks: array (nullable = true)

SPARK SUMMIT
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Task Info, Accumulables, SQL Metrics

df .filter ("Event='SparkListenerTaskEnd'") .select("Task Info.*") .printSchema

root
|-— Accumulables: array (nullable = true)
| |-— element: struct (containsNull = true) AccumUIableS are used
| | |-— ID: long (nullable = true) ﬁ .
|| I-- Name: string (nullable = true) to keep accounting of

| | |-- Value: string (nullable = true)

o metrics updates,
|-— Attempt: long (nullable = true) |nCIUd|ng SQL metI’ICS

|-- Executor ID: string (nullable = true)

|-- Failed: boolean (nullable = true)
|-- Finish Time: long (nullable = true)

|-- Getting Result Time: long (nullable = true)

|-— Host: string (nullable = true) Deta'ls about the TaSk

|-- Index: long (nullable = true)

|--— Killed: boolean (nullable = true) ﬁ LaunCh Tlme, FIﬂISh
| -- Launch Time: long (nullable = true) Tlme, HOSt, LOC&'Ity, etC

|-- Locality: string (nullable = true)

|-- Speculative: boolean (nullable = true)
|-- Task ID: long (nullable = true)

SPARK SUMMIT
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EventLog Analytics Using Spark SQL
Aggregate stage info metrics by name and display sum(values):

scala> spark.sql ("select Name, sum(Value) as value from
aggregatedStageMetrics group by Name order by Name") .show (40, false)

e o +
| Name |value |
e o +
|aggregate time total (min, med, max) |1230038.0
|data size total (min, med, max) |5.6000205E7 |
|duration total (min, med, max) |3202872.0 |
|number of output rows |2.5047598006E9 |
|internal . .metrics.executorRunTime |857185.0
|internal.metrics.executoGCuTime [1.46231111372E11 |
|

SPARK SUMMIT
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Drill Down Into Executor Task Metrics

Relevant code in Apache Spark - Core
— Example snippets, show instrumentation in Executor.scala
— Note, for SQL metrics, see instrumentation with code-generation

ff Run the actual task and measure its runtime.
taskStart = System.currentTimeMillis()

taskstartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) {

threadMXBean.getCurrentThreadCpuTime
} else 8L

task.metrics.setExecutorRunTime((taskFinish - taskStart) - task.executorDeserializeTime)

task.metrics.setExecutorCpuTime(

SPARK SUMMIT
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Read Metrics with sparkMeasure

sparkMeasure is a tool for performance investigations of Apache Spark
workloads https://github.com/LucaCanali/sparkMeasure

$ bin/spark-shell --packages ch.cern.sparkmeasure:spark-measure 2.11:0.11

scala> val stageMetrics = ch.cern.sparkmeasure.StageMetrics (spark)

scala> stageMetrics.runAndMeasure (spark.sqgl ("select count(*) from
range (1000) cross join range(1000) cross join range (1000)") .show)

Scheduling mode = FIFO

Spark Context default degree of parallelism = 8
Aggregated Spark stage metrics:

numStages => 3

sum (numTasks) => 17

elapsedTime => 9103 (9 s)

sum (stageDuration) => 9027 (9 s)

sum (executorRunTime) => 69238 (1.2 min)
sum (executorCpuTime) => 68004 (1.1 min)

<more metrics>

SPARK SUMMIT
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https://github.com/LucaCanali/sparkMeasure
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Notebooks and sparkMeasure

* Interactive use: suitable for
notebooks and REPL

« Offline use: save metrics for
later analysis

» Metrics granularity:
collected per stage or
record all tasks

« Metrics aggregation: user-
defined, e.g. per SQL
statement

 Works with Scala and
Python

SPARK SUMMIT
EUROPE 2017

®databricks Spark_Performance_Measurements_With_sparkMeasure_Scala (scaia) & Impart Motebook

Getting started with sparkMeasure on databricks clusters

SparkMeasure is a tool for performance investigations of Apache Spark workloads.

To use it on Databricks notebooks
= create a library from the Databricks Web interface with the extra jars for the package spark measure
« http://mavenrepository.com/artifact/ch.cern.sparkmeasure/spark-measure_2.11/0.11
» ch.cern.sparkmeasure:spark-measure_2.11:0.11

Source code and details at: https://github.com/LucaCanali/sparkMeasure

// First example, measure metrics aggregated ot stage level

wval stageMetrics = ch.cern.sparkmeasure.5tageMetrics(spark)
stageMetrics.runAndMeasure(spark.sql("select count(#) from range(1@88) cross join range{1808) cross join range(1880)").show}

Time taken: 204 ms

Scheduling mode = FAIR

Spark Context default degree of parallelism = 8
Aggregated Spark stage metrics:

numStages => 3

sum(numTasks) => 17

elapsedTime => 124 (8.1 s)

sum(stageDuration) => 87 (87 ms)
sum(executorRunTime) => 214 (9.2 =)
sum(executorCpuTime) => 157 (8.2 s)

#EUdev2 26




Collecting Info Using Spark Listener

- Spark Listeners
are used to send
task metrics from
executors to driver

/{ Proof-of-concept code of how to extend Spark listeners for custom monitoring of spark metrics

/f wWhen using this from the spark-shell, use the REPL command :paste and copy-paste the following code

/{ Tested on Spark 2.1.8, March 2817

import org.apache.spark.scheduler._
import org.apache.log4j.LogManager
val logger = LogManager.getlLogger(”CustomListener™)

class CustomListener extends SparkListener |{

- Underlying data
transport used by
WebUI,
sparkMeasure, etc

override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = {
logger.warn(s"Stage completed, runTime: %{stageCompleted.stagelnfo.taskMetrics.executorRunTime},

s"cpuTime: %{stageCompleted.stagelnfo.taskMetrics.executorCpuTimel}™)

wval mylistener=new CustomListener

//sc is the active Spark Context

- Spark Listeners for

r—

sc.addsparkListener(myListener) ]

your custom
monitoring code

S/ run a simple Spark job and note the additional warning messages emitted by the CustomLister with
/f Spark execution metrics, for exmaple run

spark.time(sql("select count(*) from range(le4) cross join range(le4)™).show)

ProofOfConceptSparkCuctomlListener.scala.txt hosted with ‘@ by GitHub

‘() SPARK SUMMIT
_) EUROPE 2017
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view raw
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Examples — Parquet I/O

* An example of how to measure I/O, Spark reading Apache
Parquet files

« This causes a full scan of the table store sales

spark.sql ("select * from store sales where ss_sales price=-1.0")
.collect ()

« Testrun on a cluster of 12 nodes, with 12 executors, 4 cores each
« Total Time Across All Tasks: 59 min

* Locality Level Summary: Node local: 1675

* Input Size / Records: 185.3 GB /4319943621

 Duration: 1.3 min

SPARK SUMMIT
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Parquet |/O — Filter Push Down

« Parquet filter push down in action

 This causes a full scan of the table store_sales with a filter
condition pushed down

spark.sql ("select * from store sales where ss_quantity=-1.0")
.collect ()

« Testrun on a cluster of 12 nodes, with 12 executors, 4 cores each
 Total Time Across All Tasks: 1.0 min

* Locality Level Summary: Node local: 1675

* Input Size / Records: 16.2 MB / O

 Duration: 3 s

SPARK SUMMIT
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Parquet I/O — Drill Down

« Parquet filter push down

— 1/O reduction when Parquet pushed down a filter condition and using
stats on data (min, max, num values, num nulls)

— Filter push down not available for decimal data type
(ss sales price)

scalar sgl{“"select * from store_sales where ss_guantity=-1").explain
== Physical Plan ==
*Project [ss_sold_time_sk#8, ss_item_sk#l, ss_customer sk#2, ss_cdemo_sk#3, ss_hdemo_sk#4, ss_addr_sk#5, ss_store_ski#b, ss_promo_sk#7, ss_ticket_number#8, ss_guantity#9,
ss_wholesale_cost#18, ss_list price#ll, ss_sales_price#12, ss_ext discount_amt#l3, ss_ext sales_price#l4, ss_ext wholesale_cost#l5, ss_ext list price#16, ss_ext tax#17, ss_coupon_amti#l8,
ss_net_paid#19, ss_net_paid_inc_tax#208, ss_net_profit#21, ss_sold_date sk#22]
+- *Filter (isnotnull(ss_guantity#9) && (ss_guantity#9 = -1))

+- *FileScan parquet
[ss_sold_time_sk#8,ss_item_sk#l,ss_customer_ sk#2,ss_cdemo_sk#3,ss_hdemo_sk#d,ss_addr sk#5,ss_store_sk#6,ss_promo_sk#7,ss_ticket_number#8,ss_guantity#9,ss_wholesale cost#18,ss_list price#l
1,ss_sales pr1ce#12 ss_ext_ dlscount amt#13,ss_ext_sales pr1ce#14 S5_ ext wholesale cost#15,ss_ext_list prlce#is ss_ext_taxi#l7,ss_coupon_ amt#iS ss_net_pald#19,ss_net_paid_inc_tax#20,ss_net_
proFlt#Zi ss_sold_date_sk#22] Batched: true, Format: Parguet, H dex[hdFs //XXX KL XXX/user/XXX/TPCDS/tpcds 1588/store sales], PartitionCount: 1824,
PartitionFilters: [], PushedFilters: [IsNotNull(ss_quantlty)

Filter;”predicate push down
https://db-blog.web.cern.ch/blog/luca-canali/2017-06-diving-spark-and-parquet-workloads-example

SPARK SUMMIT
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CPU and I/O Reading Parquet Files

# echo 3 > /proc/sys/vm/drop caches # drop the filesystem cache

$ bin/spark-shell --master local[l] --packages ch.cern.sparkmeasure:spark-
measure 2.11:0.11 --driver-memory 16g
val stageMetrics = ch.cern.sparkmeasure.StageMetrics (spark)

stageMetrics.runAndMeasure (spark.sql ("select * from web sales
where ws_sales price=-1") .collect())

Spark Context default degree of parallelism = 1
Aggregated Spark stage metrics:
numStages => 1

sum (numTasks) => 787 : : 0 _
elapsedTime => 465430 (7.8 min) CPU time is 70% of run time

sum (stageDuration) => 465430 (7.8 min)

sum (executorRunTime) => 463966 (7.7 min) Note: OS tools confirm that the
sum (executorCpuTime) => 325077 (5.4 min) difference “Run’- “CPU” time is

sum (JvmGCTime) => 3220 (3 s) )
spent in read calls (used a
@._)3?34‘0’552%?’7””” #EUdev2 SystemTap script) 31




Stack Profiling and Flame Graphs

Flamegraph: Spark reading a table in Parquet

- U S e StaC k p rOfi I i n g to :Ja k.5ql("select * from tpcds_web_sales where ws_sales_price=-1)
. . e | ]
iInvestigate CPU usage o

¢
i

- Flame graph
visualization to help
identify “hot methods”
and context (parent
stack)

- Use profilers that
don’t suffer from Java
Safepoint bias, e.g.
async-profiler

o
g
g
)

g

g
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2z
‘
. e ames

[ [ java/iang/Thread.run

https://github.com/LucaCanali/Miscellaneous/blob/master/Spark _Notes/Tools_Spark_Linux_FlameGraph.md
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https://github.com/jvm-profiling-tools/async-profiler
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How Does Your Workload Scale?

JOB SPEEDUP VS. NUMBER OF CONCURRENT TASKS
Measure latency as function of
N# of concurrent tasks 20 -

B Ideal scalability -

¢ Measured speedup g
Example workload: Spark 15 T e
reading Parquet files from - e _
memory = ¢ ¢ °saturationzone
o 10 . r'e
Speedup(p) = R(1)/R(p) & "
5 i.
Speedup grows linearly in P
ideal case. Saturation effects e
and serialization reduce 0
scalability 0 5 10 15 20

) P = NUMBER OF CONCURRENT TASKS
(see also Amdhal’s law)

SPARK SUMMIT
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Are CPUs Processing Instructions or
Stalling for Memory?

* Measure Instructions per Cycle (IPC) and CPU-to-Memory throughput
* Minimizing CPU stalled cycles is key on modern platforms

* Tools to read CPU HW counters: perf and more
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark _Notes/Tools_Linux_Memory_ Perf Measure.md

MEMORY THROUGHPUT VS. NUMBER OF CONCURRENT TASKS

MEASURED IPCVS. NUMBER OF CONCURRENT TASKS 100
5 2 CPU-to-memory throughput close
o . . \
= # = {0 saturation for this system — “=»e
5 ARG SRR SR R N c ?
o 16 2 PY
L T 60
* g °
5 ™ . o
G Increasing N# of stalled s °
2 12 . 5
= cycles at high load s .
2 L = °

0 2 4 6 8 10 12 14 16 18 20 [ ]
NUMBER OF CONCURRENT TASKS 0
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Lessons Learned — Measuring CPU

 Reading Parquet data is CPU-intensive

— Measured throughput for the test system at high load (using all 20 cores)
« about 3 GB/s — max read throughput with lightweight processing of parquet files

— Measured CPU-to-memory traffic at high load ~80 GB/s

e Comments:

— CPU utilization and memory throughput are the bottleneck in this test
« Other systems could have I/O or network bottlenecks at lower throughput

— Room for optimizations in the Parquet reader code?

https://db-blog.web.cern.ch/blog/luca-canali/2017-09-performance-analysis-cpu-intensive-workload-apache-spark

SPARK SUMMIT
@ EUROPE 2017 #EUdev2 35




Pitfalls: CPU Utilization at High Load

* Physical cores vs. threads
— CPU utilization grows up to the number of available threads
— Throughput at scale mostly limited by number of available cores
— Pitfall: understanding Hyper-threading on multitenant systems

Example data: CPU-bound workload (reading Parquet files from memory)

Test system has 20 physical cores JOb Iatency iS roughly constant
Metric 20 concurrent 40 concurrent 60 concurrent

tasks tasks tasks
Elapsed time 205 23 P _— Extra time from CPU runqueue wait
Executor run time 392 (8925 1354 |
Executor CPU Time (3765 asdemmizs 20 tlasks->eachtask gets a core
CPU-memory datavolume 1.6 TB 2.27TB 2.27TB 40 tasks -> they share CPU cores
CPU-memory throughput 85 GB/s 90 GB/s 90 GB/s Itis as if CPU Speed has become

IPC 1.42 0.66 0.63 2 times slower
(f)) ES&%‘Q;{,%MMIT #EUdev2 36
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Lessons Learned on Garbage
Collection and CPU Usage

Measure: reading Parquet Table with “--driver-memory 1g” (default)

sum (executorRunTime) => 468480 (7.8 min)‘\\\ Run Time =
sum (executorCpuTime) => 304396 (5.1 min) CPU Time (executor) + JVM GC

sum (jvmGCTime) => 163641 (2.7 min)

OS tools: (ps -efo cputime -p <pid_of SparkSubmit>)

CPUtime = 2306 sec *—__ Many CPU cycles used by JVM, extra CPU time

not accounted in Spark metrics due to GC
Lessons learned:

« Use OS tools to measure CPU used by JVM
« Garbage Collection is memory hungry (size your executors accordingly)
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Performance at Scale: Keep
Systems Resources Busy

A : .
Number of Runnmg tasks in parallel
concurrent Is key for performance
active tasks Ideal
100 Important loss of
efficiency when the
number of concurrent
active tasks << available
Stragglers tasks cores
limit the perfo
Elapsed time
0 >
TO T1
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Issues With Stragglers

« Slow running tasks - stragglers
— Many causes possible, including
— Tasks running on slow/busy nodes
— Nodes with HW problems
— Skew in data and/or partitioning

« Afew “local” slow tasks can wreck havoc in global perf

— It is often the case that one stage needs to finish before the next
one can start

— See also discussion in SPARK-2387 on stage barriers
— Just a few slow tasks can slow everything down

SPARK SUMMIT
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Investigate Stragglers With Analytics
on “Task Info” Data

Number of running Spark tasks vs. Time

e NUM_TUNNing_tasks

Example of performance
limited by long tail and
stragglers

Zone of full utilization of
allocated tasks/cores (56)

g

5

Data source: EventLog or
sparkMeasure (from task info:
task launch and finish time)

=}

=]

Low CPU utilization
due to long tail
and task stragglers

=]

Data analyzed using Spark
SQL and notebooks

Number of tasks running concurrently at a given time

=

5 100 150 200 50 300
Time (sec)

From https://db-blog.web.cern.ch/blog/luca-canali/2017-03-measuring-apache-spark-workload-metrics-performance-troubleshooting
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Task Stragglers — Drill Down

Heatmap: Number of concurrent tasks vs. Host name and Time

Drill down on task latency per
executor:

it's a plot with 3 dimensions

Stragglers due to a few e
machines in the cluster: f
later identified as slow HW g
Lessons learned: identify and
remove/repair non-performing
hardware from the cluster

1 11 22 31 4 5 6 71 8 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321 331 341
Time (sec)

From https://github.com/LucaCanali/sparkMeasure/blob/master/examples/SparkTaskMetricsAnalysisExample.ipynb
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Web Ul — Monitor Executors

The Web Ul shows detalls of executors
— Including number of active tasks (+ per-node info)

Sﬁ‘a'r 220 Jobs  Stages  Storage  Emvironment = Executors = SQL
Executors
s veres | Al OK: 480 cores allocated and 480 active tasks
Summary
RDD Storage Disk Active Fai Complete Total Task Time Shuffle Shuffle
Blocks Memory Used ores Tasks Tasks Tasks Tasks (GC Time)  Input Read Write Blacklisted
Active(61) 646 11 6MB /38 00B 480 480 22860 23340 37h(18 161.3 3.7GB 1606 GB 0
min} GB
Dead(0) 0 00B/00OB 00B 0 0 Oms({0ms) 00B 00B 0o0B 0
Total(61) 646 11 6MB /38 0.0B - 22860 23340 37h(18 1613 37GB  1606GB O
min) GB
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Example of Underutilization

 Monitor active tasks with Web Ul

Utilization is low at this snapshot:
480 cores allocated and 48 active tasks

Summary
RDD Storage Disk Activ Failed Complete Total Task Time Shuffle Shuffle
Blocks  Memory U Cores Tasks Tasks Tasks Tasks (GC Time)  Input Read Write Blacklisted
Active(61) 582 4036MB/ 0B 480 68950 68998 PREARPENON 8939 3878GB  2428GB 0
38 TB GB
Dead(0) 0 00B/0.0B B 0 0 Oms(0ms) 00B 00B 008 0
Total(61) 582 4036 MB/ 0QB 68950 68998 PREARPENON 8939 3878GB  2428GB 0
j8TB GB

43
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Visualize the Number of Active Tasks

» Plot as function of time to identify possible under-utilization

— Grafana visualization of number of active tasks for a benchmark job running on
60 executors, 480 cores

Data source:
/executor/threadpool/
activeTasks

Transport: Dropwizard
metrics to Graphite sink

20:39

0 2 = \ \ A
’ 20:37 20:38 20:40 20:41 20:42 20:43 20:: 20:45 20:46 20:47 20:48 20:49 20:50 20:51
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Measure the Number of Active Tasks
With Dropwizard Metrics Library

 The Dropwizard metrics library is integrated with Spark

— Provides configurable data sources and sinks. Details in doc and config file
“metrics.properties’

--conf spark.metrics.conf=metrics.properties
« Spark data sources:
— Can be optional, as the JvmSource or “on by default’, as the executor source
— Notably the gauge: /executor/threadpool/activeTasks
— Note: executor source also has info on I/O
« Architecture

— Metrics are sent directly by each executor -> no need to pass via the driver.
— More details: see source code “ExecutorSource.scala”
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Limitations and Future Work

Many important topics not covered here
— Such as investigations and optimization of shuffle operations, SQL plans, etc

— Understanding root causes of stragglers, long tails and issues related to efficient
utilization of available cores/resources can be hard

Current tools to measure Spark performance are very useful.. but:

— Instrumentation does not yet provide a way to directly find bottlenecks
 Identify where time is spent and critical resources for job latency
» See Kay Ousterhout on “Re-Architecting Spark For Performance Understandability”
— Currently difficult to link measurements of OS metrics and Spark metrics
« Difficult to understand time spent for HDFS 1/0O (see HADOOP-11873)
— Improvements on user-facing tools

« Currently investigating linking Spark executor metrics sources and Dropwizard
sink/Grafana visualization (see SPARK-22190)
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https://issues.apache.org/jira/browse/HADOOP-11873
https://issues.apache.org/jira/browse/SPARK-22190

S

Conclusions

* Think clearly about performance
— Approach it as a problem in experimental science
— Measure — build models — test — produce actionable results

« Know your tools

— Experiment with the toolset — active benchmarking to understand
how your application works — know the tools’ limitations

« Measure, build tools and share results!
— Spark performance is a field of great interest
— Many gains to be made + a rapidly developing topic
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