
WIFI SSID:Spark+AISummit | Password: UnifiedDataAnalytics

Luca Canali, CERN

Performance

Troubleshooting Using

Apache Spark Metrics

#UnifiedDataAnalytics #SparkAISummit

About Luca

3#UnifiedDataAnalytics #SparkAISummit

• Data Engineer at CERN

– Hadoop and Spark service, database services

– 19+ years of experience with data engineering

• Sharing and community

– Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali

4

CERN: founded in 1954: 12 European States

Science for Peace and Development

Today: 23 Member States

Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France,

Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania,
Serbia, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom

Associate Members in the Pre-Stage to Membership: Cyprus, Slovenia

Associate Member States: India, Lithuania, Pakistan, Turkey, Ukraine

Applications for Membership or Associate Membership: Brazil, Croatia, Estonia

Observers to Council: Japan, Russia, United States of America; European Union, JINR
and UNESCO

~ 2600 staff

~ 1800 other paid personnel

~ 14000 scientific users

Budget (2019) ~ 1200 MCHF

Data at the Large Hadron Collider

LHC experiments data: >300 PB

Computing jobs on the WLCG Grid: using ~1M cores

5

Analytics Platform @CERN

HEP software

Experiments storage

HDFS

Personal storage

- “Big Data” open source components

- Integrated with domain-specific

software and existing infrastructure

- Users in: Physics, Accelerators, IT

6

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj0r7aN3dThAhWCbVAKHb1hCsIQjRx6BAgBEAQ&url=https://indico.cern.ch/event/538540/contributions/2187138/attachments/1282513/1906054/IT-cernbox-2016-05-31.pdf&psig=AOvVaw2pMudr8fBzgEOu2GjfcgVp&ust=1555508026791340

Hadoop and Spark Clusters at CERN

• Spark running on clusters:

– YARN/Hadoop

– Spark on Kubernetes

Accelerator logging

(part of LHC

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 65 nodes

(Cores – 2.2k, Mem – 20 TB, Storage – 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)

7#UnifiedDataAnalytics #SparkAISummit

Text

Code

Monitoring

Visualizations

Sparkmonitor -> Jupyter extension

for Spark monitoring, developed as

a GSoC project with CERN.

https://medium.com/@krishnanr/sp

arkmonitor-big-data-tools-for-

physics-analysis-bbcdef68b35a

https://medium.com/@krishnanr/sparkmonitor-big-data-tools-for-physics-analysis-bbcdef68b35a

Performance Troubleshooting

Goals:

• Improving productivity

• Reducing resource usage and cost

• Metrics: latency, throughput, cost

How:

• Practice and methodologies

• Gather performance and workload data

9#UnifiedDataAnalytics #SparkAISummit

Performance Methodologies and

Anti-Patterns

Typical benchmark graph

– Just a simple measurement

– No root-cause analysis

– Guesses and generalization

Sound methodologies:
http://www.brendangregg.com/methodology.html

10#UnifiedDataAnalytics #SparkAISummit

0

2

4

6

8

10

12

System A System B

T
IM

E
 (

M
IN

U
T

E
S

)

Vendor A benchmark

System A is

5x faster!

Workload and Performance Data

• You want data to find answers to questions like

– What is my workload doing?

– Where is it spending time?

– What are the bottlenecks (CPU, I/O)?

– How are systems resources used?

– Why do I measure the {latency/throughput} that I

measure?

• Why is not 10x better?

11#EUdev2

Data + Context => Insights

Workload monitoring data +

Spark architecture knowledge

12#UnifiedDataAnalytics #SparkAISummit

Application

Info on application

architecture

Info on computing

environment

Agent takes produces:

insights + actions

Measuring Spark

• Distributed system, parallel architecture

– Many components, complexity increases when running at scale

– Execution hierarchy: SQL -> Jobs -> Stages -> Tasks

– Interaction with clusters and storage

13#UnifiedDataAnalytics #SparkAISummit

Spark Instrumentation - WebUI

WebUI and History server: standard instrumentation
• Details on jobs, stages, tasks

• Default: http://driver_host:4040

• Details on SQL execution and execution plans

• https://github.com/apache/spark/blob/master/docs/web-ui.md

14#UnifiedDataAnalytics #SparkAISummit

http://localhost:4040/api/v1/applications
https://github.com/apache/spark/blob/master/docs/web-ui.md

Spark Instrumentation – Metrics

Task metrics:

• Instrument resource usage by executor tasks:
– Time spent executing tasks,

– CPU used, I/O metrics,

– Shuffle read/write details, ..

– SPARK-25170:

https://spark.apache.org/docs/latest/monitoring.html

SQL metrics:
• DataFrame/SQL operations. Mostly used by Web UI SQL tab.

See SPARK-28935 + Web-UI documentation

15#UnifiedDataAnalytics #SparkAISummit

Task

https://spark.apache.org/docs/latest/monitoring.html

How to Gather Spark Task Metrics

• Web UI exposes REST API

Example: http://localhost:4040/api/v1/applications

History server reads from Event Log (JSON file)
– spark.eventLog.enabled=true

– spark.eventLog.dir = <path>

• Programmatic interface via “Spark Listeners”

sparkMeasure -> a tool and working example code of

how to collect metrics with Spark Listeners

16#UnifiedDataAnalytics #SparkAISummit

http://localhost:4040/api/v1/applications

Spark Metrics in REST API

…

17#UnifiedDataAnalytics #SparkAISummit

Task Metrics in the Event Log
val df = spark.read.json("/var/log/spark-history/application_1567507314781_..")

df.filter("Event='SparkListenerTaskEnd'").select("Task Metrics.*").printSchema

18#UnifiedDataAnalytics #SparkAISummit

|-- Disk Bytes Spilled: long (nullable = true)

|-- Executor CPU Time: long (nullable = true)

|-- Executor Deserialize CPU Time: long (nullable = true)

|-- Executor Deserialize Time: long (nullable = true)

|-- Executor Run Time: long (nullable = true)

|-- Input Metrics: struct (nullable = true)

| |-- Bytes Read: long (nullable = true)

| |-- Records Read: long (nullable = true)

|-- JVM GC Time: long (nullable = true)

|-- Memory Bytes Spilled: long (nullable = true)

|-- Output Metrics: struct (nullable = true)

| |-- Bytes Written: long (nullable = true)

| |-- Records Written: long (nullable = true)

|-- Result Serialization Time: long (nullable = true)

|-- Result Size: long (nullable = true)

|-- Shuffle Read Metrics: struct (nullable = true)

| |-- Fetch Wait Time: long (nullable = true)

| |-- Local Blocks Fetched: long (nullable = true)

| |-- Local Bytes Read: long (nullable = true)

| |-- Remote Blocks Fetched: long (nullable = true)

| |-- Remote Bytes Read: long (nullable = true)

| |-- Remote Bytes Read To Disk: long (nullable = true)

| |-- Total Records Read: long (nullable = true)

|-- Shuffle Write Metrics: struct (nullable = true)

| |-- Shuffle Bytes Written: long (nullable = true)

| |-- Shuffle Records Written: long (nullable = true)

| |-- Shuffle Write Time: long (nullable = true)

|-- Updated Blocks: array (nullable = true)

| |-- element: string (containsNull = true)

Spark Internal Task metrics:

Provide info on executors’ activity:

Run time, CPU time used, I/O metrics, JVM

Garbage Collection, Shuffle activity, etc.

Spark Listeners, @DeveloperApi

• Custom class, extends SparkListener

• Methods react on events to collect data, example:

• Attach custom Lister class to Spark Session
--conf spark.extraListeners=..

19

SparkMeasure Architecture

20#UnifiedDataAnalytics #SparkAISummit

SparkMeasure – Getting Started

21#UnifiedDataAnalytics #SparkAISummit

• bin/spark-shell --packages ch.cern.sparkmeasure:spark-

measure_2.11:0.15

• bin/spark-shell --packages ch.cern.sparkmeasure:spark-

measure_2.11:0.15

• val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)

•

• bin/spark-shell --packages ch.cern.sparkmeasure:spark-

measure_2.11:0.15

• val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)

•

• val myQuery = "select count(*) from range(1000) cross join

range(1000) cross join range(1000)"

• stageMetrics.runAndMeasure(spark.sql(myQuery).show())

SparkMeasure Output Example

22#UnifiedDataAnalytics #SparkAISummit

• Scheduling mode = FIFO

• Spark Context default degree of parallelism = 8

• Aggregated Spark stage metrics:

• numStages => 3

• sum(numTasks) => 17

• elapsedTime => 9103 (9 s)

• sum(stageDuration) => 9027 (9 s)

• sum(executorRunTime) => 69238 (1.2 min)

• sum(executorCpuTime) => 68004 (1.1 min)

• sum(executorDeserializeTime) => 1031 (1 s)

• sum(executorDeserializeCpuTime) => 151 (0.2 s)

• sum(resultSerializationTime) => 5 (5 ms)

• sum(jvmGCTime) => 64 (64 ms)

• sum(shuffleFetchWaitTime) => 0 (0 ms)

• sum(shuffleWriteTime) => 26 (26 ms)

• max(resultSize) => 17934 (17.0 KB)

• sum(numUpdatedBlockStatuses) => 0

• sum(diskBytesSpilled) => 0 (0 Bytes)

• sum(memoryBytesSpilled) => 0 (0 Bytes)

• max(peakExecutionMemory) => 0

• sum(recordsRead) => 2000

• sum(bytesRead) => 0 (0 Bytes)

• sum(recordsWritten) => 0

• sum(bytesWritten) => 0 (0 Bytes)

• sum(shuffleTotalBytesRead) => 472 (472 Bytes)

• sum(shuffleTotalBlocksFetched) => 8

• sum(shuffleLocalBlocksFetched) => 8

• sum(shuffleRemoteBlocksFetched) => 0

• sum(shuffleBytesWritten) => 472 (472 Bytes)

• sum(shuffleRecordsWritten) => 8

SparkMeasure, Usage Modes

• Interactive: use from shell or notebooks
– Works with Jupyter notebooks, Azure, Colab, Databricks, etc.

• Use to instrument your code

• Flight recorder mode
– No changes needed to the code

– For Troubleshooting, for CI/CD pipelines, …

• Use with Scala, Python, Java

23#UnifiedDataAnalytics #SparkAISummit

https://github.com/LucaCanali/sparkMeasure

https://github.com/LucaCanali/sparkMeasure

Instrument Code with

SparkMeasure

24#UnifiedDataAnalytics #SparkAISummit

https://github.com/LucaCanali/sparkMeasure/blob/master/docs/Instrument_Python_code.md

SparkMeasure on Notebooks:

Local Jupyter and Cloud Services

25#UnifiedDataAnalytics #SparkAISummit

https://github.com/LucaCanali/sparkMeasure/tree/master/examples

SparkMeasure on Notebooks:

Jupyter Magic: %%sparkmeasure

26#UnifiedDataAnalytics #SparkAISummit

… (note, output truncated to fit in slide

SparkMeasure as Flight Recorder

Capture metrics and write to files when finished:

27#UnifiedDataAnalytics #SparkAISummit

Monitoring option: write to InfluxDB on the fly:

Spark Metrics System

• Spark is also instrumented using the

Dropwizard/Codahale metrics library

• Multiple sources (data providers)
– Various instrumentation points in Spark code

– Including task metrics, scheduler, etc

– Instrumentation from the JVM

• Multiple sinks
– Graphite (InfluxDB), JMX, HTTP, CSV, etc…

28#UnifiedDataAnalytics #SparkAISummit

Ingredients for a Spark

Performance Dashboard
• Architecture

– Know how the “Dropwizard metrics system” works

– Which Spark components are instrumented

• Configure backend components
– InfluxDB and Grafana

• Relevant Spark configuration parameters

• Dashboard graphs
– familiarize with available metrics

– InfluxDB query building for dashboard graphs

29#UnifiedDataAnalytics #SparkAISummit

Spark Performance Dashboard

30#UnifiedDataAnalytics #SparkAISummit

Send Spark Metrics to InfluxDB

31#UnifiedDataAnalytics #SparkAISummit

• $ SPARK_HOME/bin/spark-shell \

• --conf "spark.metrics.conf.driver.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"\

• --conf

"spark.metrics.conf.executor.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"

• --conf "spark.metrics.conf.*.sink.graphite.host"="graphiteEndPoint_influxDB_hostName>" \

• --conf "spark.metrics.conf.*.sink.graphite.port"=<graphite_listening_port> \

• --conf "spark.metrics.conf.*.sink.graphite.period"=10 \

• --conf "spark.metrics.conf.*.sink.graphite.unit"=seconds \

• --conf "spark.metrics.conf.*.sink.graphite.prefix"="lucatest" \

• --conf "spark.metrics.conf.*.source.jvm.class"="org.apache.spark.metrics.source.JvmSource"

• Edit $SPARK_HOME/conf/metrics.properties

• Alternative: use the config parameters spark.metrics.conf.*

Assemble Dashboard Components

• Metrics written from Spark to InfluxDB
– Configuration of a Graphite endpoint in influxdb.conf

– Templates: how to ingest Spark metrics into InfluxDB series
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard

• Grafana graphs built using data queried from InfluxDB
– Get started: Import an example dashboard definition

• Kubernetes users: a helm chart to automate config at:
– https://github.com/cerndb/spark-dashboard

32#UnifiedDataAnalytics #SparkAISummit

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard
https://github.com/cerndb/spark-dashboard

Grafana Dashboard

• Summaries

• Key metrics

• Graphs for drill-down analysis

33#UnifiedDataAnalytics #SparkAISummit

Spark Dashboard - Examples
Graph: “number of active tasks” vs. time
• Is Spark using all the available resources/cores?

• Are there time ranges with significant gaps?

Identify possible issues:
• Long tails

• Stragglers

• Data skew

34#UnifiedDataAnalytics #SparkAISummit

Dashboard – I/O metrics

Graph: “HDFS Read Throughput” vs. time

35#UnifiedDataAnalytics #SparkAISummit

Dashboard – Memory

Graphs of JVM

memory usage

• Heap

• Off-heap

• Executors and

driver

36#UnifiedDataAnalytics #SparkAISummit

Dashboard – Executor CPU

Utilization

Graph: “CPU utilization by executors’ JVM” vs. time

• Total JVM CPU:

• CPU used by tasks

• CPU used by GC

37#UnifiedDataAnalytics #SparkAISummit

Task Time Drill Down, by Activity

Graph: Task total run time + drill down by component:

• CPU, Wait time, Garbage collection, etc

Investigation:

• CPU bound?

• Impact of GC

• I/O time?

• Other time?

38#UnifiedDataAnalytics #SparkAISummit

Graph Annotations

Improvement:

• Mark SQL/job/stage begin and

end timestamps

Implementation:

• SparkMeasure collects and writes

query/jobs begin and end

timestamps data to InfluxDB

• Grafana implements annotations

39#UnifiedDataAnalytics #SparkAISummit

Spark Dashboard, Lessons Learned

• Very useful to search for bottlenecks
– Many instrumented components

– Drilldown where time is spent

– Time evolution details
• Time series of N# active tasks, CPU, I/O, memory, etc

• Effort: you have to understand the root causes
– Use data to make and prove or disprove models

– The instrumentation is still evolving
• example: I/O time is not measured directly, Python UDF, etc

40#UnifiedDataAnalytics #SparkAISummit

WIP: How to Measure I/O Time?
Goal:

• How much of the workload time is spent

doing I/O (reading)?

Apache Spark does not instrument I/O time

• Apache Hadoop Filesystem API does

not measure I/O time

Experimenting

• Added I/O read time instrumentation for

HDFS and S3A to sandbox Hadoop fork

• Exported the metrics using Spark

Executor Plugins SPARK-28091

41#UnifiedDataAnalytics #SparkAISummit

Missing time instrumentation

Green bars: measured HDFS read time

Executor run time and wait time components

Executor Plugins Extend Metrics

• User-defined executor metrics, SPARK-28091, target Spark 3.0.0

– Example: add I/O metrics for s3a filesystem:

42

/bin/spark-shell --jars <path>/sparkexecutorplugins_2.12-0.1.jar \

--conf spark.executor.plugins=ch.cern.ExecutorPluginScala.S3AMetrics27

https://github.com/cerndb/SparkExecutorPlugins

https://github.com/cerndb/SparkExecutorPlugins

Metrics from OS Monitoring

• Very useful also to collect OS-based metrics
– Hadoop: dashboard with HDFS and YARN metrics

– OS host metrics: Collectd, Ganglia

– Kubernetes: Prometheus-based monitoring and

dashboard

43#UnifiedDataAnalytics #SparkAISummit

Notable JIRAs about Metrics
• Documentation improvements “Spark monitoring”

– Master, SPARK-26890, Add Dropwizard metrics list and configuration details

– Spark 2.4.0, SPARK-25170: Add Task Metrics description to the documentation

• Master, SPARK-23206 Additional Memory Tuning Metrics
– Master, SPARK-29064 Add Prometheus endpoint for executor metrics

– WIP, SPARK-27189 Add memory usage metrics to the metrics system

• Master, SPARK-28091 Extend Spark metrics system with user-

defined metrics using executor plugins

• Master, SPARK-28475 Add regex MetricFilter to GraphiteSink

• CPU time used by JVM:
– Spark 2.4.0: SPARK-25228 Add executor CPU Time metric

– Master: SPARK-26928, Add driver CPU Time to the metrics system,

• Spark 2.3.0: SPARK-22190 Add Spark executor task metrics to

Dropwizard metrics

44#UnifiedDataAnalytics #SparkAISummit

Conclusions
• Performance troubleshooting by understanding

– Spark architecture + Spark instrumentation, Web UI

– Spark Task metrics + Listeners, tool: sparkMeasure

– Spark Metrics System, tool: Grafana dashboard

• Contribute, adopt, share
– Instrumentation in Spark ecosystem keeps improving

– Solid methodologies and tools are key

– Share your results, tools, issues, dashboards..

45#UnifiedDataAnalytics #SparkAISummit

Instrumentation +

Context

Insights +

Actions

Acknowledgements

• Colleagues at CERN
– Hadoop and Spark service, in particular Prasanth Kothuri and

Riccardo Castellotti

• Thanks to Apache Spark committers and community
– Help with JIRAs and PRs

• References:
– https://github.com/LucaCanali/sparkmeasure

– https://db-blog.web.cern.ch/blog/luca-canali/2019-02-

performance-dashboard-apache-spark

46#UnifiedDataAnalytics #SparkAISummit

https://github.com/LucaCanali/sparkmeasure
https://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-apache-spark

DON’T FORGET TO RATE

AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

