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This document describes some basic CPU and memory load testing on the Spark servers used for the 

CERN Hadoop Service in April 2023. It reports on the tests performed, tools used, findings, and 

lessons learned. 
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Motivations 
CPU usage is important for data processing: We observe that workloads using Spark on the Hadoop 

services at CERN are often CPU-bound. Notably, we observe that when Apache Spark has to process 

large Parquet files, the operations require several GBs of RAM often core and are often CPU-bound. 

It is important for the evolution of the Spark service (Spark on Hadoop and Spark on Kubernetes) to 

understand the CPU demands from users’ jobs and to understand what the available HW is capable 

of delivering. This exercise provides some test data for two of the recent data platforms used by our 

services. 

 

Description and limitations of the tests 
The tests reported here are quite limited in scope, as they focus only on CPU and performance and 

with two specific and “narrow” workloads. However, I believe they provide some indications on the 

behavior of the server CPU performance and the overall CPU capacity of the tested servers. The 

comparison between two different server models is the original motivator for this work, in particular 

the interest was to understand those servers can perform and scale when used for running Apache 

Spark and Hadoop processed. Note, this work is not intended to be a benchmark of the tested 

systems. 

 

Tools used for load testing 
 

- The first workload generator and testing tool is a simple script burning CPU cycles in a loop and 

executed using multiple workers running in parallel, two implementations have been used, one 

in Python and one in Rust, deploying compiled binaries. Both provide similar results.  

- The second workload generator is a custom tool that runs on top of Apache Spark. It is meant 

for stressing specifically CPUs and the CPU-to-memory throughput. 

 

Links to the code, measured data, and data analyses using notebooks: 

CPU load testing kit - Python 

version  

Kit for load testing and measuring CPU-intensive 

workloads, Python version. 

https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Test_CPU_parallel_Python
https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Test_CPU_parallel_Python


CPU load testing kit - Rust version  

Kit for Load testing and measuring CPU-intensive 

workloads, Rust version. 

Spark_CPU_memory_load_testkit Load testing CPU and memory using Apache Spark. 

 

Key findings 
 

The newer server model (RAC55) outperformed the older model (HDP6) in terms of CPU 

performance for up to 16 concurrent workers. However, due to its higher core count, the HDP6 

model demonstrated higher throughput under heavier load. 

 

Test 1 – Concurrent workers burning CPU cycles in a loop: The RAC55 server model demonstrated 

faster per-thread CPU performance up to 16 concurrent threads. The difference in performance 

between HDP6 (older) and RAC55 (newer) was roughly a 1.3x increase in per-CPU thread 

performance in favor of RAC55. However, the HDP6 model, with a higher number of cores, provided 

higher total throughput at saturation, about 1.7x higher than RAC55. 

 

Test 2 – Parallel workers running CPU- and Memory-intensive load: The RAC55 server model 

displayed the highest performance (1.3x over HDP6) for low load (number of concurrent 

workers/tasks <= 20). However, as in Test 1, the HDP6 server model, with more cores, demonstrated 

higher total throughput when the load was increased.  

Both server models showed an increase in memory throughput as the load (number of concurrent 

tasks) increased. The throughput saturation appeared when the number of workers exceeded the 

number of cores on the server and was finally reached when the number of parallel workers equaled 

the number of logical cores on the system. The RAC55 model showed the highest performance for 

low load (number of concurrent workers/tasks <= 20). 

 

 

Description of the platforms 
 

CPU load tests have been performed on two dedicated test servers representative of production 

servers, we will refer to them in this document as RAC55 and HDP6. 

The servers were installed with RHEL 7.9 and tests with Apache Spark used Spark version 3.3.2 

We omit the configuration of networking and I/O, as not relevant for these tests. 

We don't report the exact CPU models in this doc.  

 

RAC55: 

https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Test_CPU_parallel_Rust
https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/Spark_CPU_memory_load_testkit


- 16 physical cores (2 sockets, 8 physical cores each), 32 logical cores visible on the OS due to 

hyperthreading 

- CPU nominal freq: 3.7 GHz 

- CPU from 2019, CPU architecture: Zen 3 

- L1 caches: 32K + 32K, L2 cache 512K, L3 cache 32768K 

- RAM: DDR4, 1 TB 

 

HDP6: 

- 32 physical cores (2 sockets, 16 physical cores each),   64 logical cores visible on the OS due to 

hyperthreading 

- CPU max freq: 3.0 GHz 

- CPU from 2017, CPU architecture: Zen 2 

- L1 caches: 32K + 32K, L2 cache 512K, L3 cache 16384K 

- RAM: DDR4, 512 GB 

 

 

Test 1 – Concurrent workers burning CPU cycles in a loop 
 

The workload generator and testing tool is a simple Python script (or Rust program) burning CPU 

cycles in a loop. 

The script is executed running on a configurable number of concurrent workers. The script measures 

the time spent executing a simple CPU-burning loop. 

This provides a simple way to generate CPU load on the system. 

Example of how the data was collected with the testing tool written in Rust and compiled to binary:  

./test_cpu_parallel --num_workers 8 --full --output myout.csv 

See code at https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing 

The advantage of this approach is that the testing tool is easy to write and can be easily automated.  

The weak point of testing this way is that the test workload is somewhat “artificial” and 

disconnected with the server actual purpose as a DB server. For example, the CPU-burning loop used 

for this test is mostly instruction-intensive on the CPU and does not spend much time on memory 

access. 

 

Measurements and results: 
 

The following figures represent the same data in different ways to highlight different performance 

and scalability characteristics. 

 



Figure 1 – Raw data 

- The figure reports the testing job execution time, measured for varying server load on the three 

tested servers. 

- A common pattern is that at low load (see data with just a few parallel workers) the job run time 

is almost constant. 

- An important difference is that the job run time is different on the different platforms, with 

RAC55 being faster than HDP6. 

- Another pattern is that the job running starts to increase linearly at higher load.  

- The job execution time curve starts to bend upwards as the load increases. Typically, we see this 

happening when the num of parallel workers is greater than the number of physical cores on 

the server (16 cores on RAC55, 32 cores on HDP6) 

 

 

Figure 2 - Speed 

- This plot reports the number of jobs per minute per worker 

- Data points can be interpreted as a measure of the “speed of the CPU” for a new job coming 

into the system given a defined system load 

- We see that the “effective CPU speed” decreases as the load increases, with sudden changes at 

the points where the number of parallel workers is equal to the number of physical cores 

- The CPU speed per thread is also different depending on the CPU architecture, with RAC55 

being faster than HDP6. 

 



 

Figure 3 - Capacity 

- This plot shows the number of jobs executed per minute summed over all the running worker 

threads. 

- As the load increases the server capacity increases, reaching a maximum value roughly when 

the number of workers = number of logical cores. 

- This allows to compare the “Total CPU capacity” of the two servers. HDP6 has the highest 

number of cores and the highest CPU throughput at saturation. 

 

Figure 4 - Scalability 

- This shows the speedup, a measure of scalability, for this plot it’s calculated as the ration of the 

N * (job execution time at load n) / (job execution time at load 1)  

- We see almost linear scalability for low loads (up to the number of physical cores), then a 

slower increase up to the number of logical cores and, finally, saturation  

- Both HDP6 and RAC55 appear to scale almost linearly up to the number of physical cores 

(respectively 32 and 16) 



 

Notes: 

- Of the tested servers RAC55 appears the fastest on per-thread CPU performance, up to the 16 

concurrent threads (16 is the number of physical cores in RAC55). 

o The difference in performance between HDP6 (oldest) and RAC55 (newest) is roughly 

x1.3 in per-CPU thread performance in favor of RAC55. 

- HDP6 has the highest number of cores which provides for higher total throughput at saturation: 

about 1.7x higher on HDP6 compared to RAC55. 

 

Test 2 – Parallel workers running CPU- and Memory-intensive load 
 

The second workload generator is a custom tool designed for conducting CPU and CPU-to-memory 

bandwidth load testing. The workload is implemented in Python using PySpark and is designed to be 

CPU- and memory-intensive. It involves executing a Spark job that reads a large Parquet table in 

parallel, utilizing a user-defined number of parallel workers. The primary output of the tool is the 

measurement of the job execution time, which is recorded as a function of the number of parallel 

workers employed. Running the program in full mode initiates a range of tests and generates a CSV 

file that contains the recorded values. 

 

These tests take longer to run the simple “tests with a CPU-burning script” described above, 

moreover they require some expertise with running Apache Spark to configure and validate the test 

results.  

 

Measurements and results: 
 

The following figures represent the same data in different ways to highlight different performance 

and scalability characteristics. 



Notebooks with the graphs at 

https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/Spark_CPU_memo

ry_load_testkit  

 

Figure 5 – Raw Data and job curation 

- The figure shows the measured time to complete the job (reading a large table) as a function of 

the number of concurrent workers (Spark tasks)  

- The common trend is that the job runtime decreases as there are more concurrent workers. 

- Measurements are “noisy” so we should take about 10% as error margin on the collected data 

points. 

- There are differences in performance and total throughput with RAC55 being fastest at low load 

(load <= 16 concurrent workers, as RAC55 has 16 physical cores) 

 

 

Figure 6 – Throughput, jobs per minute 

- The figure shows the number of jobs completed per unit time, a measure of the system’s 

throughput. 

- Measurements are “noisy” so we should take about 10% as error margin on the collected data 

points. 

- The throughput increases as the number of parallel workers increases.  

- Saturation in the throughput starts to appear when the number of workers exceeds the number 

of cores in the server (16 for RAC55 and 32 for HDP6) and is finally reached when the number of 

parallel workers are equal to the number of logical cores on the system (32 for RAC55 and 64 for 

HDP6). 

- RAC55 shows the highest performance (1.3x over HDP6) for low load (number of concurrent 

workers/tasks <= 20). 

https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/Spark_CPU_memory_load_testkit
https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/Spark_CPU_memory_load_testkit


 

 

Memory throughput measurements from the OS: 
 

Memory throughput has been monitored and measured while running the Spark-based memory-

intensive workload. 

In particular, mmeasurements were taken on AMD systems using AMD uProf (“MICRO-prof”) tool: 
/opt/AMDuProf_4.0-341/bin/AMDuProfPcm -m memory -a -d 20 -C -A system 

We could find that memory throughput increases as the load (number of concurrent tasks) 

increases. Memory throughput saturation starts to appear when the number of workers exceeds the 

number of cores in the server (16 for RAC55 and 32 for HDP6) and is finally reached when the 

number of parallel workers is equal to the number of logical cores on the system (32 for RAC55 and 

64 for HDP6). 

Note that the memory throughput values measured are quite high, however they do not reach HW 

saturation. With tools described in 

https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Tools_Linux_Mem

ory_Perf_Measure.md we could find that RAC55 was capable of performing high-load tests with an 

aggregated memory throughput of 260 GB/sec and HDP6 of 220 GB/sec. 

 

Figure 7 – Measured memory throughput 

- The figure shows the measured memory throughput while running the Spark-based load testing 

kit described above. 

- Measurements are “noisy” so we should take about 10% as error margin on the collected data 

points. 

- The throughput increases as the number of parallel workers increases.  

- Similarly to the case shown in the throughput graph (Figure 6), memory throughput saturation 

starts to appear when the number of workers exceeds the number of cores in the server (16 for 

https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Tools_Linux_Memory_Perf_Measure.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Performance_Testing/Tools_Linux_Memory_Perf_Measure.md


RAC55 and 32 for HDP6) and is finally reached when the number of parallel workers is equal to 

the number of logical cores on the system (32 for RAC55 and 64 for HDP6). 

- RAC55 shows the highest performance (1.3x over HDP6) for low load (number of concurrent 

workers/tasks <= 20). 

 

 

Conclusions 
This work collects a few tests and measurement on stress testing and CPU loading two different 

platforms of interest for the CERN databases, Hadoop, and Spark services. 

The tests performed are narrow in scope, just addressing the CPU- and memory-intensive loads.  

Two different testing tools have been used for these tests: testing with a simple CPU-burning script 

loop run in parallel, and testing with a workload generator for CPU and memory intensive work using 

Apache Spark 

In both cases we find that the newest server model (RAC55) has the highest CPU performance up to 

the load of 16 concurrent workers, while the server HPD6 has the highest throughput due to the 

higher core count (there are 32 cores in HDP6 and 16 cores in RAC55). 

 


