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About Luca

• Data Engineer and team lead at CERN

– Hadoop and Spark service, database services

– 18+ years of experience with data(base) services

– Performance, architecture, tools, internals 

• Sharing and community

– Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali
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The Large Hadron Collider (LHC)
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LHC and Data
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LHC data processing 
teams (WLCG) have 
built custom solutions 
able to operate at 
very large scale (data 
scale and world-wide 
operations)



Overview of Data at CERN

• Physics Data ~ 300 PB -> EB 

• “Big Data” on Spark and Hadoop ~10 PB
– Analytics for accelerator controls and logging

– Monitoring use cases, this includes use of Spark streaming

– Analytics on aggregated logs

– Explorations on the use of Spark for high energy physics

• Relational databases ~ 2 PB
– Control systems, metadata for physics data 

processing, administration and general-purpose
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Apache Spark @ CERN
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Cluster Name Configuration Software Version

Accelerator logging 20 nodes (Cores 480, Mem - 8 TB, Storage – 5 PB, 96GB in SSD) Spark 2.2.2 – 2.3.1

General Purpose 48 nodes (Cores – 892,Mem – 7.5TB,Storage – 6 PB) Spark 2.2.2 – 2.3.1

Development cluster 14 nodes (Cores – 196,Mem – 768GB,Storage – 2.15 PB) Spark 2.2.2 – 2.3.1

ATLAS Event Index 18 nodes (Cores – 288,Mem – 912GB,Storage – 1.29 PB) Spark 2.2.2 – 2.3.1

• Spark on YARN/HDFS
• In total ~1850 physical cores and 15 PB capacity

• Spark on Kubernetes
• Deployed on CERN cloud using OpenStack

• See also, at this conference: “Experience of Running Spark on 
Kubernetes on OpenStack for High Energy Physics Workloads” 



Motivations/Outline of the 

Presentation
• Report experience of using Apache Spark at 

CERN DB group
– Value of Spark for data coming from DBs

• Highlights of learning experience
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Data Engineer

DBA/Dev Big Data



Goals

• Entice more DBAs and RDBMS Devs into entering 

Spark community

• Focus on added value of scalable platforms and 

experience on RDBMS/data practices
– SQL/DataFrame API very valuable for many data workloads

– Performance instrumentation of the code is key: use metric 

and tools beyond simple time measurement

8#SAISDev11



Spark, Swiss Army Knife of Big Data

One tool, many uses
• Data extraction and manipulation

• Large ecosystem of data sources

• Engine for distributed computing

• Runs SQL

• Streaming

• Machine Learning

• GraphX

• ..
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Image Credit: Vector Pocket Knife from Clipart.me



Problem We Want to Solve

• Running reports on relational 

DATA
– DB optimized for transactions and online

– Reports can overload storage system

• RDBMS specialized 
– for random I/O, CPU, storage and 

memory 

– HW and SW are optimized at a 

premium for performance and 

availability
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Offload from RDBMS

• Building hybrid transactional and reporting 

systems is expensive
– Solution: offload to a system optimized for capacity

– In our case: move data to Hadoop + SQL-based engine
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ETL
Queries

Report 

Queries

Transactions 

on RDBMS



Spark Read from RDBMS via JDBC

val df = spark.read.format("jdbc")

.option("url","jdbc:oracle:thin:@server:port/service”)

.option("driver", "oracle.jdbc.driver.OracleDriver")

.option("dbtable", "DBTABLE")

.option("user", “XX").option("password", "YY")

.option("fetchsize",10000)

.option("sessionInitStatement",preambleSQL)

.load()
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Optional DB-specific 

Optimizations

SPARK-21519

option("sessionInitStatement", """BEGIN execute immediate 'alter session set "_serial_direct_read"=true'; END;""")



Challenges Reading from RDMBs

• Important amount of CPU consumed by serialization-

deserialization transferring to/from RDMS data format
– Particularly important for tables with short rows

• Need to take care of data partitioning, parallelism of 

the data extraction queries, etc
– A few operational challenges 

– Configure parallelism to run at speed

– But also be careful not to overload the source when reading
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Apache Sqoop to Copy Data

• Scoop is optimized to read from RDBMS

• Sqoop connector for Oracle DBs has several key 

optimizations

• We use it for incremental refresh of data from 

production RDBMS to HDFS “data lake”
– Typically we copy latest partition of the data

– Users run reporting jobs on offloaded data from YARN/HDFS
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Sqoop to Copy Data (from Oracle)

sqoop import \

--connect jdbc:oracle:thin:@server.cern.ch:port/service

--username ..

-P \

-Doraoop.chunk.method=ROWID

--direct \

--fetch-size 10000 \

--num-mappers XX \

--target-dir XXXX/mySqoopDestDir \

--table TABLESNAME \

--map-column-java FILEID=Integer,JOBID=Integer,CREATIONDATE=String \

--compress --compression-codec snappy \

--as-parquetfile
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Sqoop has a rich choice of options to customize the data transfer

Oracle-specific optimizations



Streaming and ETL

• Besides traditional ETL also streaming

important and used by production use cases
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Streaming 

data into 

Apache Kafka



Spark and Data Formats

• Data formats are key for performance

• Columnar formats are a big boost for many 

reporting use cases
– Parquet and ORC

– Column pruning

– Easier compression/encoding

• Partitioning and bucketing also important
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Data Access Optimizations

Use Apache Parquet or ORC

• Profit of column projection, filter push down, 

compression and encoding, partition pruning
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Col1 Col2 Col3 Col4

Partition=1

Min

Max

Count

..



Parquet Metadata Exploration
Tools for Parquet metadata exploration, useful for 

learning and troubleshooting
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Useful tools:

parquet-tools

parquet-reader

Info at:

https://github.com/LucaCanali/Misc

ellaneous/blob/master/Spark_Note

s/Tools_Parquet_Diagnostics.md



SQL Now

After moving the data (ETL), 

add the queries to the new system

Spark SQL/DataFrame API is a powerful engine
– Optimized for Parquet (recently improved ORC)

– Partitioning, Filter push down

– Feature rich, code generation, also has CBO (cost 

based optimizer)

– Note: it’s a rich ecosystem, options are available (we 

also used Impala and evaluated Presto)
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Spark SQL Interfaces: Many Choices

• PySpark, spark-shell, 

Spark jobs
– in Python/Scala/Java

• Notebooks
– Jupyter

– Web service for data 

analysis at CERN  

swan.cern.ch

• Thrift server
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Lessons Learned

Reading Parquet is CPU intensive

• Parquet format uses encoding and compression

• Processing Parquet -> hungry of CPU cycles 

and memory bandwidth

• Test on dual socket CPU
– Up to 3.4 Gbytes/s reads 
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Benchmarking Spark SQL

Running benchmarks can be useful (and fun):

• See how the system behaves at scale

• Stress-test new infrastructure

• Experiment with monitoring and troubleshooting tools

TPCDS benchmark

• Popular and easy to set up, can run at scale

• See https://github.com/databricks/spark-sql-perf
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Example from TPCDS Benchmark
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Lessons Learned from Running 

TPCDS
Useful for commissioning of new systems

• It has helped us capture some system parameter 

misconfiguration before prod

• Comparing with other similar systems

• Many of the long-running TPCDS queries
– Use shuffle intensively

– Can profit of using SSDs for local dirs (shuffle)

• There are improvements (and regressions) of
– TPCDS queries across Spark versions
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Learning Something New About SQL
Similarities but also differences with RDBMS:

• Dataframe abstraction, vs. database table/view

• SQL or DataFrame operation syntax
// Dataframe operations

val df = spark.read.parquet("..path..")

df.select("id").groupBy("id").count().show()

// SQL

df.createOrReplaceTempView("t1")

spark.sql("select id, count(*) from t1 group by 

id").show()
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..and Something OLD About SQL

Using SQL or DataFrame operations API is equivalent

• Just different ways to express the computation

• Look at execution plans to see what Spark executes
– Spark Catalyst optimizer will generate the same plan for the 2 examples

== Physical Plan ==

*(2) HashAggregate(keys=[id#98L], functions=[count(1)])

+- Exchange hashpartitioning(id#98L, 200)

+- *(1) HashAggregate(keys=[id#98L], functions=[partial_count(1)])

+- *(1) FileScan parquet [id#98L] Batched: true, Format: Parquet, 

Location: InMemoryFileIndex[file:/tmp/t1.prq], PartitionFilters: [], 

PushedFilters: [], ReadSchema: struct<id:bigint>
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Monitoring and Performance 

Troubleshooting

Performance is key for data processing at scale

• Lessons learned from DB systems:
– Use metrics and time-based profiling

– It’s a boon to rapidly pin-point bottleneck resources

• Instrumentation and tools are essential
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Spark and Monitoring Tools
• Spark instrumentation

– Web UI

– REST API

– Eventlog

– Executor/Task Metrics

– Dropwizard metrics library

• Complement with
– OS tools

– For large clusters, deploy tools that ease working at cluster-level

• https://spark.apache.org/docs/latest/monitoring.html
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WEB UI
• Part of Spark:  Info on Jobs, Stages, Executors, Metrics, 

SQL,..

– Start with: point web browser driver_host, port 4040
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Spark Executor Metrics System

Metrics collected at 

execution time

Exposed by WEB UI/ 

History server, 

EventLog, custom tools 

https://github.com/ce

rndb/sparkMeasure
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Spark Executor Metrics System

What is available with Spark Metrics, SPARK-25170
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Spark Executor Task Metric 

name
Short description

executorRunTime
Elapsed time the executor spent running this task. This includes time fetching shuffle 

data. The value is expressed in milliseconds.

executorCpuTime
CPU time the executor spent running this task. This includes time fetching shuffle data. 

The value is expressed in nanoseconds.

executorDeserializeTime Elapsed time spent to deserialize this task. The value is expressed in milliseconds.

executorDeserializeCpuTime
CPU time taken on the executor to deserialize this task. The value is expressed in 

nanoseconds.

resultSize The number of bytes this task transmitted back to the driver as the TaskResult.

jvmGCTime
Elapsed time the JVM spent in garbage collection while executing this task. The value 

is expressed in milliseconds.

+ I/OMetrics, Shuffle metrics , …
26 metrics available, see 

https://github.com/apache/spark/blob/master/docs/monitoring.md



Spark Metrics - Dashboards

Use to produce dashboards to measure online:

• Number of active tasks, JVM metrics, CPU usage SPARK-25228, 

Spark task metrics SPARK-22190, etc.
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Dropwizard metrics

Graphite sink

Configure: --conf spark.metrics.conf=metrics.properties

https://issues.apache.org/jira/browse/SPARK-25228
https://issues.apache.org/jira/browse/SPARK-22190


More Use Cases: Scale Up!

• Spark proved valuable and flexible 

• Ecosystem and tooling in place

• Opens to exploring more use cases and.. 

scaling up!
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Spark APIs for Physics data analysis

• POC: processed 1 PB of data in 10 hours

Use Case: Spark for Physics
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Data 

reduction 

(for further 

analysis

Histograms 

and plots of 

interest

Apply 

computation at 

scale (UDF)

Read into Spark

(spark-root 

connector)

Input:

Physics data 

in CERN/HEP 

storage 

See also, at this conference: “HEP Data Processing with Apache Spark” and “CERN’s Next Generation Data 

Analysis Platform with Apache Spark”



Use Case: Machine Learning at 

Scale
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Data and 

models 

from 

Physics

Input: 

labeled

data and 

DL models

Feature 

engineer

ing at 

scale

Distributed 

model training
Output: particle 

selector model

AUC= 

0.9867

Hyperparameter

optimization 

(Random/Grid 

search)



Summary and High-Level View of 

the Lessons Learned
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Transferrable Skills, Spark - DB

Familiar ground coming from RDBMS world

• SQL

• CBO

• Execution plans, hints, joins, grouping, windows, etc

• Partitioning

Performance troubleshooting, instrumentation, SQL 

optimizations

• Carry over ideas and practices from DBs
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Learning Curve Coming from DB

• Manage heterogeneous environment and usage: 

Python, Scala, Java, batch jobs, notebooks, etc

• Spark is fundamentally a library not a server 

component like a RDBMS engine

• Understand differences tables vs DataFrame APIs

• Understand data formats

• Understand clustering and environment (YARN, 

Kubernets, …)

• Understand tooling and utilities in the ecosystem
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New Dimensions and Value
• With Spark you can easily scale up your SQL 

workloads
– Integrate with many sources (DBs and more) and storage 

(Cloud storage solutions or Hadoop) 

• Run DB and ML workloads and at scale
- CERN and HEP are developing solutions with Spark for use 

cases for physics data analysis and for ML/DL at scale

• Quickly growing and open community
– You will be able to comment, propose, implement features, 

issues and patches
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Conclusions

- Apache Spark very useful and versatile
- for many data workloads, including DB-like 

workloads

- DBAs and RDBMS Devs
- Can profit of Spark and ecosystem to scale up 

some of their workloads from DBs and do more!

- Can bring experience and good practices over from 

DB world
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