
Luca Canali, CERN

Apache Spark for RDBMS

Practitioners:

How I Learned to Stop Worrying

and Love to Scale

#SAISDev11

About Luca

• Data Engineer and team lead at CERN

– Hadoop and Spark service, database services

– 18+ years of experience with data(base) services

– Performance, architecture, tools, internals

• Sharing and community

– Blog, notes, tools, contributions to Apache Spark

@LucaCanaliDB – http://cern.ch/canali

2#SAISDev11

3#SAISDev11

The Large Hadron Collider (LHC)

3

LHC and Data

4#SAISDev11

LHC data processing
teams (WLCG) have
built custom solutions
able to operate at
very large scale (data
scale and world-wide
operations)

Overview of Data at CERN

• Physics Data ~ 300 PB -> EB

• “Big Data” on Spark and Hadoop ~10 PB
– Analytics for accelerator controls and logging

– Monitoring use cases, this includes use of Spark streaming

– Analytics on aggregated logs

– Explorations on the use of Spark for high energy physics

• Relational databases ~ 2 PB
– Control systems, metadata for physics data

processing, administration and general-purpose

5#SAISDev11

Apache Spark @ CERN

6#SAISDev11

Cluster Name Configuration Software Version

Accelerator logging 20 nodes (Cores 480, Mem - 8 TB, Storage – 5 PB, 96GB in SSD) Spark 2.2.2 – 2.3.1

General Purpose 48 nodes (Cores – 892,Mem – 7.5TB,Storage – 6 PB) Spark 2.2.2 – 2.3.1

Development cluster 14 nodes (Cores – 196,Mem – 768GB,Storage – 2.15 PB) Spark 2.2.2 – 2.3.1

ATLAS Event Index 18 nodes (Cores – 288,Mem – 912GB,Storage – 1.29 PB) Spark 2.2.2 – 2.3.1

• Spark on YARN/HDFS
• In total ~1850 physical cores and 15 PB capacity

• Spark on Kubernetes
• Deployed on CERN cloud using OpenStack

• See also, at this conference: “Experience of Running Spark on
Kubernetes on OpenStack for High Energy Physics Workloads”

Motivations/Outline of the

Presentation
• Report experience of using Apache Spark at

CERN DB group
– Value of Spark for data coming from DBs

• Highlights of learning experience

7#SAISDev11

Data Engineer

DBA/Dev Big Data

Goals

• Entice more DBAs and RDBMS Devs into entering

Spark community

• Focus on added value of scalable platforms and

experience on RDBMS/data practices
– SQL/DataFrame API very valuable for many data workloads

– Performance instrumentation of the code is key: use metric

and tools beyond simple time measurement

8#SAISDev11

Spark, Swiss Army Knife of Big Data

One tool, many uses
• Data extraction and manipulation

• Large ecosystem of data sources

• Engine for distributed computing

• Runs SQL

• Streaming

• Machine Learning

• GraphX

• ..

9#SAISDev11

Image Credit: Vector Pocket Knife from Clipart.me

Problem We Want to Solve

• Running reports on relational

DATA
– DB optimized for transactions and online

– Reports can overload storage system

• RDBMS specialized
– for random I/O, CPU, storage and

memory

– HW and SW are optimized at a

premium for performance and

availability

10#SAISDev11

Offload from RDBMS

• Building hybrid transactional and reporting

systems is expensive
– Solution: offload to a system optimized for capacity

– In our case: move data to Hadoop + SQL-based engine

11#SAISDev11

ETL
Queries

Report

Queries

Transactions

on RDBMS

Spark Read from RDBMS via JDBC

val df = spark.read.format("jdbc")

.option("url","jdbc:oracle:thin:@server:port/service”)

.option("driver", "oracle.jdbc.driver.OracleDriver")

.option("dbtable", "DBTABLE")

.option("user", “XX").option("password", "YY")

.option("fetchsize",10000)

.option("sessionInitStatement",preambleSQL)

.load()

12#SAISDev11

Optional DB-specific

Optimizations

SPARK-21519

option("sessionInitStatement", """BEGIN execute immediate 'alter session set "_serial_direct_read"=true'; END;""")

Challenges Reading from RDMBs

• Important amount of CPU consumed by serialization-

deserialization transferring to/from RDMS data format
– Particularly important for tables with short rows

• Need to take care of data partitioning, parallelism of

the data extraction queries, etc
– A few operational challenges

– Configure parallelism to run at speed

– But also be careful not to overload the source when reading

13#SAISDev11

Apache Sqoop to Copy Data

• Scoop is optimized to read from RDBMS

• Sqoop connector for Oracle DBs has several key

optimizations

• We use it for incremental refresh of data from

production RDBMS to HDFS “data lake”
– Typically we copy latest partition of the data

– Users run reporting jobs on offloaded data from YARN/HDFS

14#SAISDev11

Sqoop to Copy Data (from Oracle)

sqoop import \

--connect jdbc:oracle:thin:@server.cern.ch:port/service

--username ..

-P \

-Doraoop.chunk.method=ROWID

--direct \

--fetch-size 10000 \

--num-mappers XX \

--target-dir XXXX/mySqoopDestDir \

--table TABLESNAME \

--map-column-java FILEID=Integer,JOBID=Integer,CREATIONDATE=String \

--compress --compression-codec snappy \

--as-parquetfile

15#SAISDev11

Sqoop has a rich choice of options to customize the data transfer

Oracle-specific optimizations

Streaming and ETL

• Besides traditional ETL also streaming

important and used by production use cases

16#SAISDev11

Streaming

data into

Apache Kafka

Spark and Data Formats

• Data formats are key for performance

• Columnar formats are a big boost for many

reporting use cases
– Parquet and ORC

– Column pruning

– Easier compression/encoding

• Partitioning and bucketing also important

17#SAISDev11

Data Access Optimizations

Use Apache Parquet or ORC

• Profit of column projection, filter push down,

compression and encoding, partition pruning

18#SAISDev11

Col1 Col2 Col3 Col4

Partition=1

Min

Max

Count

..

Parquet Metadata Exploration
Tools for Parquet metadata exploration, useful for

learning and troubleshooting

19#SAISDev11

Useful tools:

parquet-tools

parquet-reader

Info at:

https://github.com/LucaCanali/Misc

ellaneous/blob/master/Spark_Note

s/Tools_Parquet_Diagnostics.md

SQL Now

After moving the data (ETL),

add the queries to the new system

Spark SQL/DataFrame API is a powerful engine
– Optimized for Parquet (recently improved ORC)

– Partitioning, Filter push down

– Feature rich, code generation, also has CBO (cost

based optimizer)

– Note: it’s a rich ecosystem, options are available (we

also used Impala and evaluated Presto)
20#SAISDev11

Spark SQL Interfaces: Many Choices

• PySpark, spark-shell,

Spark jobs
– in Python/Scala/Java

• Notebooks
– Jupyter

– Web service for data

analysis at CERN

swan.cern.ch

• Thrift server

21#SAISDev11

Lessons Learned

Reading Parquet is CPU intensive

• Parquet format uses encoding and compression

• Processing Parquet -> hungry of CPU cycles

and memory bandwidth

• Test on dual socket CPU
– Up to 3.4 Gbytes/s reads

22#SAISDev11

Benchmarking Spark SQL

Running benchmarks can be useful (and fun):

• See how the system behaves at scale

• Stress-test new infrastructure

• Experiment with monitoring and troubleshooting tools

TPCDS benchmark

• Popular and easy to set up, can run at scale

• See https://github.com/databricks/spark-sql-perf

23#SAISDev11

Example from TPCDS Benchmark

24#SAISDev11

Lessons Learned from Running

TPCDS
Useful for commissioning of new systems

• It has helped us capture some system parameter

misconfiguration before prod

• Comparing with other similar systems

• Many of the long-running TPCDS queries
– Use shuffle intensively

– Can profit of using SSDs for local dirs (shuffle)

• There are improvements (and regressions) of
– TPCDS queries across Spark versions

25#SAISDev11

Learning Something New About SQL
Similarities but also differences with RDBMS:

• Dataframe abstraction, vs. database table/view

• SQL or DataFrame operation syntax
// Dataframe operations

val df = spark.read.parquet("..path..")

df.select("id").groupBy("id").count().show()

// SQL

df.createOrReplaceTempView("t1")

spark.sql("select id, count(*) from t1 group by

id").show()

26#SAISDev11

..and Something OLD About SQL

Using SQL or DataFrame operations API is equivalent

• Just different ways to express the computation

• Look at execution plans to see what Spark executes
– Spark Catalyst optimizer will generate the same plan for the 2 examples

== Physical Plan ==

*(2) HashAggregate(keys=[id#98L], functions=[count(1)])

+- Exchange hashpartitioning(id#98L, 200)

+- *(1) HashAggregate(keys=[id#98L], functions=[partial_count(1)])

+- *(1) FileScan parquet [id#98L] Batched: true, Format: Parquet,

Location: InMemoryFileIndex[file:/tmp/t1.prq], PartitionFilters: [],

PushedFilters: [], ReadSchema: struct<id:bigint>

27#SAISDev11

Monitoring and Performance

Troubleshooting

Performance is key for data processing at scale

• Lessons learned from DB systems:
– Use metrics and time-based profiling

– It’s a boon to rapidly pin-point bottleneck resources

• Instrumentation and tools are essential

28#SAISDev11

Spark and Monitoring Tools
• Spark instrumentation

– Web UI

– REST API

– Eventlog

– Executor/Task Metrics

– Dropwizard metrics library

• Complement with
– OS tools

– For large clusters, deploy tools that ease working at cluster-level

• https://spark.apache.org/docs/latest/monitoring.html

29#SAISDev11

WEB UI
• Part of Spark: Info on Jobs, Stages, Executors, Metrics,

SQL,..

– Start with: point web browser driver_host, port 4040

30#SAISDev11

Spark Executor Metrics System

Metrics collected at

execution time

Exposed by WEB UI/

History server,

EventLog, custom tools

https://github.com/ce

rndb/sparkMeasure

31#SAISDev11

Spark Executor Metrics System

What is available with Spark Metrics, SPARK-25170

32#SAISDev11

Spark Executor Task Metric

name
Short description

executorRunTime
Elapsed time the executor spent running this task. This includes time fetching shuffle

data. The value is expressed in milliseconds.

executorCpuTime
CPU time the executor spent running this task. This includes time fetching shuffle data.

The value is expressed in nanoseconds.

executorDeserializeTime Elapsed time spent to deserialize this task. The value is expressed in milliseconds.

executorDeserializeCpuTime
CPU time taken on the executor to deserialize this task. The value is expressed in

nanoseconds.

resultSize The number of bytes this task transmitted back to the driver as the TaskResult.

jvmGCTime
Elapsed time the JVM spent in garbage collection while executing this task. The value

is expressed in milliseconds.

+ I/OMetrics, Shuffle metrics , …
26 metrics available, see

https://github.com/apache/spark/blob/master/docs/monitoring.md

Spark Metrics - Dashboards

Use to produce dashboards to measure online:

• Number of active tasks, JVM metrics, CPU usage SPARK-25228,

Spark task metrics SPARK-22190, etc.

33#SAISDev11

Dropwizard metrics

Graphite sink

Configure: --conf spark.metrics.conf=metrics.properties

https://issues.apache.org/jira/browse/SPARK-25228
https://issues.apache.org/jira/browse/SPARK-22190

More Use Cases: Scale Up!

• Spark proved valuable and flexible

• Ecosystem and tooling in place

• Opens to exploring more use cases and..

scaling up!

34#SAISDev11

Spark APIs for Physics data analysis

• POC: processed 1 PB of data in 10 hours

Use Case: Spark for Physics

35#SAISDev11

Data

reduction

(for further

analysis

Histograms

and plots of

interest

Apply

computation at

scale (UDF)

Read into Spark

(spark-root

connector)

Input:

Physics data

in CERN/HEP

storage

See also, at this conference: “HEP Data Processing with Apache Spark” and “CERN’s Next Generation Data

Analysis Platform with Apache Spark”

Use Case: Machine Learning at

Scale

36#SAISDev11

Data and

models

from

Physics

Input:

labeled

data and

DL models

Feature

engineer

ing at

scale

Distributed

model training
Output: particle

selector model

AUC=

0.9867

Hyperparameter

optimization

(Random/Grid

search)

Summary and High-Level View of

the Lessons Learned

37#SAISDev11

Transferrable Skills, Spark - DB

Familiar ground coming from RDBMS world

• SQL

• CBO

• Execution plans, hints, joins, grouping, windows, etc

• Partitioning

Performance troubleshooting, instrumentation, SQL

optimizations

• Carry over ideas and practices from DBs

38#SAISDev11

Learning Curve Coming from DB

• Manage heterogeneous environment and usage:

Python, Scala, Java, batch jobs, notebooks, etc

• Spark is fundamentally a library not a server

component like a RDBMS engine

• Understand differences tables vs DataFrame APIs

• Understand data formats

• Understand clustering and environment (YARN,

Kubernets, …)

• Understand tooling and utilities in the ecosystem

39#SAISDev11

New Dimensions and Value
• With Spark you can easily scale up your SQL

workloads
– Integrate with many sources (DBs and more) and storage

(Cloud storage solutions or Hadoop)

• Run DB and ML workloads and at scale
- CERN and HEP are developing solutions with Spark for use

cases for physics data analysis and for ML/DL at scale

• Quickly growing and open community
– You will be able to comment, propose, implement features,

issues and patches

40#SAISDev11

Conclusions

- Apache Spark very useful and versatile
- for many data workloads, including DB-like

workloads

- DBAs and RDBMS Devs
- Can profit of Spark and ecosystem to scale up

some of their workloads from DBs and do more!

- Can bring experience and good practices over from

DB world

41#SAISDev11

Acknowledgements

• Members of Hadoop and Spark service at CERN
and HEP users community, CMS Big Data project,
CERN openlab

• Many lessons learned over the years from the
RDBMS community, notably www.oaktable.net

• Apache Spark community: helpful discussions and
support with PRs

• Links
– More info: @LucaCanaliDB – http://cern.ch/canali

42#SAISdev11

http://www.oaktable.net/
http://cern.ch/canali

