O\
)X Apache Spark for RDBMS

Practitioners:
How | Learned to Stop Worrying

and Love to Scale

Luca Canali, CERN

#SAISDev1l

About Luca

« Data Engineer and team lead at CERN
— Hadoop and Spark service, database services
— 18+ years of experience with data(base) services
— Performance, architecture, tools, internals

« Sharing and community
— Blog, notes, tools, contributions to Apache Spark

% @LucaCanaliDB — http://cern.ch/canali

G\!| SPARK:AI #SAISDev11

LHC and Data

* / ? S LHC data processing
Wi , | teams (WLCG) have

Data Moved

distribution and [R = built custom solutions
processing of [i

LHC data E L iuwn able to operate at

‘ ‘ | very large scale (data
scale and world-wide

operations)

b j
CPU delivered Data stored
;._~1M Cores]

G\!| SPARK:AI #SAISDev11

Overview of Data at CERN

 Physics Data ~ 300 PB -> EB
« “Big Data” on Spark and Hadoop ~10 PB

— Analytics for accelerator controls and logging

— Monitoring use cases, this includes use of Spark streaming
— Analytics on aggregated logs

— Explorations on the use of Spark for high energy physics

 Relational databases ~ 2 PB
— Control systems, metadata for physics data
processing, administration and general-purpose

S\l SPARK+Al #SAISDev1l

Apache Spark @ CERN

- Spark on YARN/HDFS
« Intotal ~1850 physical cores and 15 PB capacity
« Spark on Kubernetes

« Deployed on CERN cloud using OpenStack

« See also, at this conference: “Experience of Running Spark on
Kubernetes on OpenStack for High Energy Physics Workloads”

Cluster Name Configuration Software Version

Accelerator logging 20 nodes (Cores 480, Mem - 8 TB, Storage — 5 PB, 96GB in SSD) Spark 2.2.2-2.3.1
General Purpose 48 nodes (Cores — 892,Mem — 7.5TB,Storage — 6 PB) Spark 2.2.2-2.3.1
Development cluster 14 nodes (Cores —196,Mem — 768GB,Storage — 2.15 PB) Spark 2.2.2-2.3.1
ATLAS Event Index 18 nodes (Cores — 288,Mem — 912GB,Storage — 1.29 PB) Spark 2.2.2-2.3.1

G\!| SPARK:AI #SAISDev11 6

Motivations/Qutline of the

Presentation

* Report experience of using Apache Spark at

CERN DB group
— Value of Spark for data coming from DBs

» Highlights of learning experience

i apacHE € z
Data Engineer - p K
~ = B oy ark’

G\!| SPARK:AI #SAISDev11

Goals

* Entice more DBAs and RDBMS Devs into entering

Spark community
* Focus on added value of scalable platforms and
experience on RDBMS/data practices
— SQL/DataFrame API very valuable for many data workloads
— Performance instrumentation of the code is key: use metric
and tools beyond simple time measurement

S\l SPARK+Al #SAISDev1l

Spark, Swiss Army Knife of Big Data

One tool, many uses

* Data extraction and manipulation
* Large ecosystem of data sources
* Engine for distributed computing

° Runs SQL .

e Streaming \\ \
* Machine Learning \

* GraphX

G\!| SPARK:AI #SAISDev11

Problem We Want to Solve

* Running reports on relational
DATA

— DB optimized for transactions and online
— Reports can overload storage system

* RDBMS specialized
— for random I/O, CPU, storage and
memory
— HW and SW are optimized at a
premium for performance and
availability

v

2 x SAS

G\!| SPARK:AI #SAISDev11

Offload from RDBMS

« Building hybrid transactional and reporting

systems IS expensive
— Solution: offload to a system optimized for capacity
— In our case: move data to Hadoop + SQL-based engine

Transactlons

Queries

AAAAAA

G\!| SPARK:AI #SAISDev11

Spark Read from RDBMS via JDBC

val df = spark.read.format (" jdbc")
.option("url","jdbc:oracle:thin:(@server:port/service”)
.option("driver", '"oracle.jdbc.driver.OracleDriver")
.option("dbtable", "DBTABLE")

.option("user", “XX") .option("password", "YY")

.option ("fetchsize",10000)
.option("sessionInitStatement" ,preambleSQL)

.load () T Optional DB-specific

Optimizations

/ SPARK-21519

BEGIN execute immediate 'alter session set " _serial_direct_read"=true'; END;""™)

||||||||

S\l SPARK+Al #SAISDev1l

Challenges Reading from RDMBs

* Important amount of CPU consumed by serialization-
deserialization transferring to/from RDMS data format
— Particularly important for tables with short rows

* Need to take care of data partitioning, parallelism of
the data extraction queries, etc
— A few operational challenges

— Configure parallelism to run at speed
— But also be careful not to overload the source when reading

S\l SPARK+Al #SAISDev1l

Apache Sgoop to Copy Data

* Scoop is optimized to read from RDBMS

* Sqoop connector for Oracle DBs has several key
optimizations

* We use it for incremental refresh of data from
production RDBMS to HDFS “data lake”

— Typically we copy latest partition of the data
— Users run reporting jobs on offloaded data from YARN/HDFS

S\l SPARK+Al #SAISDev1l

Sgoop to Copy Data (from Oracle)

Sqgoop has a rich choice of options to customize the data transfer

sqgoop import \
--connect jdbc:oracle:thin:@server.cern.ch:port/service
--username

—P\

Oracle-specific optimizations
-Doraoop.chunk.method=ROWI
--direct \

--fetch-size 10000 \

--num-mappers XX \

--target-dir XXXX/mySqoopDestDir \

--table TABLESNAME \

--map-column-java FILEID=Integer,JOBID=Integer,CREATIONDATE=String \
--compress --compression-codec snappy \

--as-parquetfile

G\!| SPARK:AI #SAISDev11

Streaming and ETL

* Besides traditional ETL also streaming
Important and used by production use cases

ApacHE € g

Spark

mm) QP mm) CErpEEp
: YR,
Streaming

data into

Apache Kafka

S\l SPARK+Al #SAISDev11

Spark and Data Formats

« Data formats are key for performance
« Columnar formats are a big boost for many
reporting use cases

— Parquet and ORC

— Column pruning
— Easier compression/encoding

« Partitioning and bucketing also important

S\l SPARK+Al #SAISDev1l

Data Access Optimizations

Use Apache Parguet or ORC
» Profit of column projection, filter push down,
compression and encoding, partiion pruning

e

Partition=1

o)

7

S\l SPARK+Al #SAISDev1l

Parquet Metadata Exploration

Tools for Parguet metadata exploration, useful for
learning and troubleshooting

Row count Size in bytes Column chunk size: Useful tool
Sertul 100lIs.
rowegrowe 1 NEEEEORC ??‘_‘?‘_‘f’?f'?]_‘_’ff??[‘_‘ ________________ compressed / uncompressed / ratio
ss_sold time_sk: INT32 SNAPPY :8 FPO: 2.43 VC:28481e0 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE parquet_tOOIS

ss_item sk: INT32 SNAPPY
55_customer sk: INT32 SNAPPY

FPO:

FPO: C:28491@0 ENC:PLAIN DICTIONARY,BIT PACKED,RLE parquet-l’eader

VC:2840100 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE

DO:@
Do:@
DO:8
ss_cdemo_sk: INT32 SNAPPY DO:@ FPO: : . /1 VC:284018@ ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
ss_hdemo_sk: INT32 SNAPPY DO:@ FPO:15848358 52:3948359;’4755688/1.28 V(C:2840180 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
s5_addr_sk: INT32 SNAPPY DO:0 FPO:197887@9 SZ:419929@/7144061/1.70 VC:2840100 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
s5_store_sk: INT32 SNAPPY DO:@ FPO:23987999 S5Z:1485046/2279438/1.62 V(:2848166 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE Info at
ss_promo_sk: INT32 SNAPPY DO:@ FPO:25393045 S7:3264278/3341421/1.82 VC:2840180 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE . . .
ss_ticket_number: INT32 SNAPPY DO:@ FPO:28657315 SZ:3748010/7125883/1.90 VC:284010@ ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE .
55_quantity: INT32 SNAPPY DO:@ FPO:32485325 SZ:25699088/2646790/1.03 VC:2848106 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE httpS//gIthUbCom/Lucacana“/MISC
ss_wholesale_cost: INT32 SNAPPY DO:0 FPO:34975233 SZ:5036313/5113188/1.02 V(:2840100 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
sleist_pr‘ic;: INT32 SNAPPY DO:©@ FPO:40011546 S$Z:5422519/5580119/1.01 VC:2840100 ENC:PLAIN:DICTIONARY:BIT:PACKEDjRLE eIIaneoUS/bIOb/maSter/Spark_NOte
s5_sales_price: INT32 SNAPPY DO:@ FPO:45434065 SZ:5386171/5463066/1.01 VC:2840100 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE H H
ssiextidgzcountiamt: INT32 SNAPPY DO:0 FPO:508820236 SZ:3721043/6898549/1.64 VC:2848100 ENC:PLAIN:DICTIDNARYjBIT:PACKEDjRLE S/TOOIS Parquet Dlag nostlcsmd
s5_ext_sales_price: INT32 SNAPPY DO:@ FPO:54541279 S2:1120299@/11309483/1.61 VC:2848100 ENC:PLAIN,BIT_PACKED,RLE - -
ss_ext_wholesale_cost: INT32 SNAPPY DO:8 FP0:65744269 S7:11235173/11389896/1.81 V(:2840108 ENC:PLAIN,BIT_PACKED,RLE
ss_ext_list_price: INT32 SNAPPY D0:© FPO:76979442 S7:11232856/11307593/1.81 VC:2848100 ENC:PLAIN,BIT_PACKED,RLE
s5_ext_tax: INT32 SNAPPY DO:©@ FPO:88211498 S5Z:62267081/6299755/1.01 VC:2848186 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
55_coupon_amt: INT32 SNAPPY DO:0© FP0:94438199 S7:3721043/6898549/1.64 VC:28481808 ENC:PLAIN_DICTIONARY,BIT_PACKED,RLE
ss_net_paid: INT32 SNAPPY DO:©@ FPO:98159242 57:11192504/11308687/1.81 VC:2848100 ENC:PLAIN,BIT_PACKED,RLE
s5_net_paid_inc_tax: INT32 SNAPPY DO:@ FPO:1@9351746 S7:11219364/11308178/1.81 VC:284010@ ENC:PLAIN,BIT_PACKED,RLE
ss_net_profit: INT32 SNAPPY DO:0 FP0:12@571110 S7:11235592/11308829/1.01 VC(:2840100 ENC:PLAIN,BIT_PACKED,RLE

S\l SPARK+Al #SAISDev1l

SQL Now

After moving the data (ETL),
add the queries to the new system

Spark SQL/DataFrame API is a powerful engine
— Optimized for Parquet (recently improved ORC)
— Partitioning, Filter push down
— Feature rich, code generation, also has CBO (cost
based optimizer)
— Note: it's a rich ecosystem, options are available (we
also used Impala and evaluated Presto

S\l SPARK+Al #SAISDev1l 20

Spark SQL Interfaces: Many Choices

Do the heavylifting in spark and collect aggregated view to panda DF 1
wostgroup like

df_loadavg pandas = spark.sql("
y y , :
L] 3 i om_unixtime (timestamp
b (from unixtime (timestamp /
J .toPandas ()
. P tl /S | 'J Visualize with seaborn
ax.set_title("Heatmap of loadAvg for NXCals se 22nd & 2018")

Heatmap of loadAvg for NXCals service on 22nd April 2018

'hadoop_n

, values='avg'), cmap=

ax = sns.heatmap (df loadAvg pandas.pivot (indes

001.cem.ch

— Jupyter f

004.cem.ch
005.cern.ch
006.cem.ch

— Web service for data o M
analysis at CERN —
swan.cern.ch L

060.cem.ch

host

055.cern.ch
056.cern.ch 16

061.cern.ch g
L]
062.cemn.ch
. 064.cern.ch
065.cemn.ch
066.cern.ch

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23
hr

G\!| SPARK:AI #SAISDev11

| essons Learned

Reading Parquet is CPU intensive

« Parquet format uses encoding and compression

* Processing Parquet -> hungry of CPU cycles
and memory bandwidth

« Test on dual socket CPU
— Up to 3.4 Gbytes/s reads

60

MEMORY THROUGHPUT (GB/S)

G\!| SPARK:AI #SAISDev11

Benchmarking Spark SQL

Running benchmarks can be useful (and fun):

* See how the system behaves at scale

* Stress-test new infrastructure

* Experiment with monitoring and troubleshooting tools

TPCDS benchmark
* Popular and easy to set up, can run at scale
* See https://github.com/databricks/spark-sql-perf

S\l SPARK+Al #SAISDev1l

Example from TPCDS Benchmark

TPCDS WORKLOAD ON NXCALS - DATA SET SCALE: 10 TB - QUERY SET V1.4
420 CORES (60 EXECUTORS, 7 CORES EACH), EXECUTOR MEMORY 100GB (14 GB PER CORE)

3000

ORACLE JVM (1.8.0_161) - SPARK 2.3.0

AVG_Exec_Time_sec

MAX_Exec

MIN_Exec

4 vTA-GSh
T = v'Taesh

i " TA-TSD
= 'TA-Gb

i ' TA-8YD
= ' TA-gpb
' TA-ppb
= v TA-TEb
i ¥ TA-Ovb
1 7'TA-g6ED

ws ' TA-gED

= ¢'TA-9gb

ERAL
§ v'TA-zeD

o
o
n
o

spuodas ul (Aduajeq) awi) uonniaxi Aianp

2500

2000

1000
0

= ¥'TA-0gb
= 7' TA-6C
= ¢'TA-LTb
- p'TA-Ggb

7' TA-epZb

= ' TA-BETD

1 v'TA-TZh
= yazb

o

= 7'TA-8TD
= {'TA-9Tb
| wTAqpTh
= 'TA-€TD
= ¢'TATTD
i 7' TA-Th

= ¥ TA-XepSSh
= #'TA-86b
= 'TA-96b
= ' TA-v6b
= ¥'TA-Z6b
= ' TA-06b
- ' TA-68b
= 'TA-£8b
- p'TA-Ggb
= p'TA-€8b
- p'TA-Tgb
= 'TA-8b

= p'TA-gLb
= ¢'TA-9/b
5 v TA-pLb
= {'IA-TLD
W vTA-Lb

= p'TA-89b
i 'TA-99b
= ' TA-p9b
i ¥'TA-zob
= ¢'TA-09b
i 7' TA-65b
{ ¢'TA-LGb

Query name

#SAISDev11

<
z
o
7]
=
()

Lessons Learned from Running
TPCDS

Useful for commissioning of new systems
* |t has helped us capture some system parameter

misconfiguration before prod
* Comparing with other similar systems

* Many of the long-running TPCDS queries

— Use shuffle intensively
— Can profit of using SSDs for local dirs (shuffle)

* There are improvements (and regressions) of
— TPCDS queries across Spark versions

S\l SPARK+Al #SAISDev1l

Learning Something New About SQL

Similarities but also differences with RDBMS:
e Dataframe abstraction, vs. database table/view

* SQL or DataFrame operation syntax
// Dataframe operations

val df = spark.read.parquet("..path..")
df.select ("1d") .groupBy ("id") .count () .show ()
// SQL

df .createOrReplaceTempView ("t1l")

spark.sql ("select 1d, count(*) from tl group by
1d") .show ()

S\l SPARK+Al #SAISDev1l

..and Something OLD About SQL

Using SQL or DataFrame operations API is equivalent
* Just different ways to express the computation

* Look at execution plans to see what Spark executes
— Spark Catalyst optimizer will generate the same plan for the 2 examples

== Physical Plan ==
*(2) HashAggregate (keys=[1d#98L], functions=[count(1l)])
+- Exchange hashpartitioning (id#98L, 200)
+- * (1) HashAggregate (keys=[1d#98L], functions=[partial count(1l)])
+- *(1) FileScan parquet [1d#98L] Batched: true, Format: Parquet,
Location: InMemoryFileIndex[file:/tmp/tl.prql, PartitionFilters: [],
PushedFilters: [], ReadSchema: struct<id:bigint>

S\l SPARK+Al #SAISDev1l

Monitoring and Performance
Troubleshooting

Performance Is key for data processing at scale

* Lessons learned from DB systems:
— Use metrics and time-based profiling
— It's a boon to rapidly pin-point bottleneck resources

 Instrumentation and tools are essential

S\l SPARK+Al #SAISDev1l

Spark and Monitoring Tools

* Spark instrumentation P
— Web Ul :
— REST API “
— Eventlog %
— Executor/Task Metrics
— Dropwizard metrics library

* Complement with
— OS tools
— For large clusters, deploy tools that ease working at cluster-level

* https://spark.apache.org/docs/latest/monitoring.html

S\l SPARK+Al #SAISDev1l

WEB

* Part of Spark: Info on Jobs, Stages, Executors, Metrics,

SQL,

— Start with: point web browser driver_host, port 4040

Sp r!z(e

Ul

Stages

Stages for All Jobs

Active Stages: 7
Pending Stages: 7

Completed Stages: 347

Active Stages (7)

Stage Id ~

375

374

373
372

3n

S\l SPARK+AI

Description
benchmark q23b-v1.4
rdd at Query.scala:125
benchmark q23bv1.4
rdd at Qi EL
benchmark g23b+v1.4
rdd at Query scala:125

benchmark g23bv1.4
rdd at Query.scala:125
benchmark q23b-v1.4
rdd at Query.scala:125
benchmark q23b-v1.4

rdd at Query.

benchmark q23b-v1.4
rdd at Query. 2

Executors SaL

g Environment

Submitted
2017/10/16 14:48:31

2017/10/16 14:48:31

201710/16 14:46:24

201710/16 14:48:31

2017/10/16 14:48:31

2017/10/16 14:48:24

2017/10/16 14:48:24

Duration Tasks: Succeeded/Total
Unknown 0/200
Unknown 0/200
2s 0/787
2s 0/200
2s 0/200
9s 1468/1625
26s 1377/1378

#SAISDev11

Input

7.7GB

137.3GB

Qutput

Shuffle Read

51.2MB

98.4 MB

Spark shell appli

Shuffle Write

663.4 MB

264.7 GB

tion Ul

Spark Executor Metrics System

Metrics collected at

execution time 555;,(?

[

1

Schedule Tasks

Spark Listener Bus

Spark Task Metrics on the Listener Bus and sparkMeasure Architecture

/ Driver \
Spark Context/Sessi ot
park Context/Session s EventJ.OR\

Exposed by WEB Ul/ E’“ -
History server, ST

Send Task metrics

- |
Heartbeat (10s) - EventLogging Listener/

- AppStatus and other 77
| Sparkinternal Listeners

Spark Web UI
|| Spark we

/ o
- Spark History 3rdparty EventlLog
/ Server reader/analysis

sparkMeasure

Schedule Tasks User-provided Listeners:

y

sparkMeasure

EventLog, custom tools :
fak |tk

https://github.com/ce

Send Task metrics

-

-)
Heartbeat (10s) l

StagelnfoRecorder

l

TaskinfoRecorder

Schedule Tasks ‘ FlightRecorderMode

e
rndb/sparkMeasure]

5\' SPARK+AI

)
} h
)

User-interactive
Scala, Python,
Jupyter,

instrumentation or
Flight Recorder

#SAISDev11

Spark Executor Metrics System

What is available with Spark Metrics, SPARK-25170

Spark Executor Task Metric Short description
name

Elapsed time the executor spent running this task. This includes time fetching shuffle
data. The value is expressed in milliseconds.

CPU time the executor spent running this task. This includes time fetching shuffle data.

The value is expressed in hanoseconds.

executorRunTime

executorCpuTime

executorDeserializeTime Elapsed time spent to deserialize this task. The value is expressed in milliseconds.
- . CPU time taken on the executor to deserialize this task. The value is expressed in
executorDeserializeCpuTime
nanoseconds.
resultSize The number of bytes this task transmitted back to the driver as the TaskResult.

Elapsed time the JVM spent in garbage collection while executing this task. The value
is expressed in milliseconds.

26 metrics available, see
https://github.com/apache/spark/blob/master/docs/monitoring.md

jvmGCTime

+ |/OMetrics, Shuffle metrics, ...

G\!| SPARK:AI #SAISDev11

Spark Metrics - Dashboards

apacHE € DropW|zard metrics

SpQrK“W.mﬂw O Grafanc

Configure: --conf spark.metrics.conf=metrics.properties

Use to produce dashboards to measure online:
®* Number of active tasks, JVM metrics, CPU usage SPARK-25228,
Spark task metrics SPARK-22190, etc.

S\l SPARK+Al #SAISDev1l

https://issues.apache.org/jira/browse/SPARK-25228
https://issues.apache.org/jira/browse/SPARK-22190

More Use Cases: Scale Up!

« Spark proved valuable and flexible
» Ecosystem and tooling in place

* Opens to exploring more use cases and..
scaling up!

S\l SPARK+Al #SAISDev1l

Use Case: Spark for Physics

Spark APls for Physics data analysis
« POC: processed 1 PB of data in 10 hours

Physics data -

— Z (;ed;;ctiﬁn = D
| - or further
| 8- 00| = SOQMK” =

in CERN/HEP Read into Spark Apply _ - ==. Histograms -
storage RO OT (spark-root computation at jupyter and plots of
ST connector) scale (UDF) o= interest

See also, at this conference: “HEP Data Processing with Apache Spark” and “CERN’s Next Generation Data
Analysis Platform with Apache Spark”

G\!| SPARK:AI #SAISDev11

Use Case: Machine Learning
Scale

at

S

"|. o] . —
Data and Tensor r
models o~ RCH <
s J\Z 0.9867
Physics K
Iaseled Feature Hyperparameter ~ Distributed Output: particle
data and engineer gptimization model training selector model
ing at :
DL models g | (Random/Grid
scale search)

G\!| SPARK:AI #SAISDev11

Summary and High-Level View of
the Lessons Learned

G\!| SPARK:AI #SAISDev11

Transferrable Skills, Spark - DB

Familiar ground coming from RDBMS world

* SQL

* CBO

* Execution plans, hints, joins, grouping, windows, etc
* Partitioning

Performance troubleshooting, instrumentation, SQL
optimizations
* Carry over ideas and practices from DBs

S\l SPARK+Al #SAISDev1l

Learning Curve Coming from DB

Manage heterogeneous environment and usage:
Python, Scala, Java, batch jobs, notebooks, etc
Spark is fundamentally a library not a server
component like a RDBMS engine

Understand differences tables vs DataFrame APIs
Understand data formats

Understand clustering and environment (YARN,
Kubernets, ...)

Understand tooling and utilities in the ecosystem

S\l SPARK+Al #SAISDev1l

New Dimensions and Value

* With Spark you can easily scale up your SQL

workloads
— Integrate with many sources (DBs and more) and storage
(Cloud storage solutions or Hadoop)
* Run DB and ML workloads and at scale
- CERN and HEP are developing solutions with Spark for use
cases for physics data analysis and for ML/DL at scale
* Quickly growing and open community
— You will be able to comment, propose, implement features,
Issues and patches

G\!| SPARK:AI #SAISDev11

Conclusions

- Apache Spark very useful and versatile

for many data workloads, including DB-like
workloads

- DBAs and RDBMS Devs

S\l SPARK+AI

Can profit of Spark and ecosystem to scale up
some of their workloads from DBs and do more!

Can bring experience and good practices over from
DB world

#SAISDev11

Acknowledgements

* Members of Hadoop and Spark service at CERN
and HEP users community, CMS Big Data project,
CERN openlab

* Many lessons learned over the years from the
RDBMS community, notably www.oaktable.net

* Apache Spark community: helpful discussions and
support with PRs

* Links
— More info: 9 @LucaCanaliDB — http://cern.ch/canali

G\!| SPARK:AI #SAISdev1l

http://www.oaktable.net/
http://cern.ch/canali

