
• Until today, the vast majority of high energy physics analysis is done
using the ROOT Framework processing physics data stored in
ROOT format files

• To use big data tools, we have solved two key data engineering
challenges:
1.Read files in ROOT Format using Spark
2.Access files stored in EOS directly from Hadoop/Spark

• This enabled us to produce, and optimize Physics Analysis
Workloads with input up to 1 PB. The Spark infrastructure is now
used by several physics analysis groups

E. Motesnitsalis1, V. Khristenko1, M. Migliorini1, R. Castellotti1, L. Canali1, M. Girone1,
D. Olivito1, M. Cremonesi2 , J. Pivarski3, O. Gutsche2

1)CERN, Geneva, Switzerland; 2)Fermilab, Batavia, USA ; 3)Princeton University

PHYSICS DATA ANALYSIS AND DATA REDUCTION
AT SCALE WITH APACHE SPARK

FUTURE STEPS

• Repeat the workload scalability tests on top of virtualized/containerized
infrastructure with Kubernetes in larger infrastructure and public clouds

• Extend the features of the “Hadoop-XRootD Connector” library (i.e. write
to EOS, better packaging, monitoring etc.)

• Extend the workloads to different and more complex use cases of
Physics Data Processing as well as use cases for Machine Learning
and Online Data Processing (Streaming)

CURRENT PROCEDURES AND MILESTONES

CONCLUSIONS

http://cern.ch/IT ©CERN CC-BY-SA 4.0

GOALS AND MOTIVATIONS

EOS Service
A disk-based, low-latency storage service with a highly-scalable
hierarchical namespace, which enables data access through the
XRootD protocol. It provides storage for both physics and user use
cases via different service instances such as EOSPUBLIC, EOSCMS etc.

• The main goal of the project is to perform Data Analysis and Data
Reduction at scale using Big Data Technologies over Physics data
acquired by CMS and made public on the CERN open data portal

• We are interested in investigating new ways to analyse physics data and
allow further development with Streaming & Machine Learning
workloads

• We want to adopt new technologies widely used in the industry with
modern APIs, development environments and platforms (notebooks etc.)

• This opens data processing for High Energy Physics (HEP) to a larger
community of data scientists and data engineers, bringing together
domain experts from industry and academia

• Spark-root is an open source Scala library which can read ROOT
TTrees, infer their schema and import them to Spark Dataframes

• Hadoop-XRootD Connector is an open source Java library that
connects to the XRootD client via Java Native Interface

• A parameterized “readAhead” buffer is used to improve performance
when reading files from the EOS Service

• We have solved two important data engineering challenges:
– Hadoop-XRootD Connector can directly access files from the EOS Service
– Spark-root can read ROOT files and infer their schema into Spark

• Did we achieve the project milestone of reducing 1 PB in 5 hours?
– Yes, we even dropped to below 4 hours in our latest tests

• Through this project we achieved:
– Efficient and fast processing of physics data
– Connecting Libraries between Big Data Technologies and HEP Tools
– Adoption of Big Data Technologies by CMS physics groups (e.g. University of

Padova, Fermilab)

Metric
Name

Total Time Spent
(Sum Over Executors)

Percentage
(Compared to
Execution Time)

Total
Execution
Time

~3000 - 3500 hours 1

CPU
Time

~1200 hours 40%

EOS Read
Time

~1200 - 1800
hours, depending
on readAhead size

40-50%

Garbage
Collection
Time

~200 hours 7-8 %

• The data processing job of this project performs event selection (i.e. Data
Reduction) and then computes the dimuon invariant mass

• On a single thread/core and one single file as input, the workload reads one
branch and produces the calculations in approximately 10 mins for a 4GB file

• The produced results of running at scale are displayed in Graphs 1-5 and Table 1.

Table 1: Key workload metrics and time spent, measured with
Spark custom instrumentation for 1 PB of input with 100
Spark executors, 800 logical cores, 8 logical cores per Spark
executor, and variable “readAhead” size between 16 KB and
64 KB.

Hadoop – XRootD Connector Architecture

Java
Native

Interface
(JNI)

Hadoop
HDFS APIHadoop-

XRootD
Connector

EOS
Storage
Service XRootD

Client

C++ Java

Graph 5: Number of concurrent active tasks throughout job execution for 1 PB of
input with 64 KB of “readAhead” buffer, 100 Spark executors, and 8 logical cores
per executor.

Graph 4: Read Throughput throughout job execution for 1 PB of input with 64 KB
of “readAhead” buffer, 100 Spark executors, and 8 logical cores per executor.

Graph 3: Executor CPU Usage throughout job execution for 1 PB of input with 64
KB of “readAhead” buffer, 100 Spark executors, and 8 logical cores per executor.

EOS
Storage
Service

ROOT
file

Driver

Executor
Task

1
Task

2

Executor
Task
x-1

Task
x

{Dimuon Invariant
Mass Calculation

Source Code}

Test Workload Architecture and File-Task Mapping
IT Hadoop and Spark Service (analytix)

ROOT
file

ROOT
file

ROOT
file

Graph 1: Runtime performance in minutes for different input size
with 407 Spark executors, 2 cores per Spark executor, 7 GB per Spark
executor. The “readAhead” connector buffer is set to 32 MB.

Graph 2: Runtime performance in minutes for different input size
with 100 Spark executors, 8 cores per Spark executor, 7 GB per Spark
executor. The “readAhead” connector buffer is set to 64 KB which
drastically improved the performance compared to Graph 1.

0

50

100

150

200

250

22 TB 44 TB 110 TB 220 TB 1 PB

Ru
nt

im
e

(M
in

ut
es

)

Dataset Size

0

50

100

150

200

250

22 TB 44 TB 66 TB 88 TB 110 TB

Ru
nt

im
e

(M
in

ut
es

)

Dataset Size

Performance Results at Scale

SPARK-ROOT AND HADOOP-XROOTD CONNECTOR

RESULTS FROM SCALABILITY TESTS

