

Architecture and Implementation of the Oracle Services for Physics at CERN

Database mini-Workshop CERN, January 26th, 2007 Luca Canali and Jacek Wojcieszuk, CERN IT

PSS Outline

- DB service for physics
- Goals and key features
- Selected implementation details
 - Main infrastructural components
 - Lessons learned from CERN's production DB services

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 2

PSS Physics Services Support

- CERN **T** Department
- Run database services to meet the requirements of the Physics community
- Key features:
 - High Availability
 - Performance and Scalability
 - Cost reduction with commodity HW
 - Consolidation
 - Solid backup and recovery
 - Security
 - Distributed databases
 - Operations and Monitoring 24x7

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 3

PSS High Availability

- Clustering of redundant HW
- Eliminate single points of failure

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 4

PSS Scalability

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Clusters are expanded to meet growth.

PSS Cost-effective solution

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

Enterprise-class HW vs. commodity HW

Enterprise HW: \$\$\$

Grid-like, cost-effective

PSS Economies of Scale

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

- Homogeneous HW configuration
 - A pool of servers, storage arrays and network devices are used as 'standard' building blocks
 - Hardware provisioning and setup is simplified
- Homogeneous software configuration
 - Same OS and database software on all nodes
 - Red Hat Linux and Oracle 10g R2
 - Simplifies installation, administration and troubleshooting

RAC Nodes Configuration

- Current commodity HW
 - Most nodes are dual CPUs
 - Xeon @ 3GHz with 2MB L2 + 4GB of RAM
 - 'mid-range PC' with dual power supply and HBA
 - Running Red Hat Linux
 - RAC clusters up to 8 nodes
- Most likely evolution:
 - Scale-up and scale-out, combined:
 - Leverage multi-core CPUs + 64bit Linux
 - Good for services that don't scale over multiple nodes
 - 'Dual cores' currently best power efficiency

CERN - IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

PSS Server Sizing

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

- How many CPUS?
 - Size CPU power to match the number of concurrent active sessions
 - DB sessions are mostly idle in our workloads, 200-500 DB sessions measured per server
- How many nodes?
 - Architect to grow (don't need to start with large clusters)
 - Isolate workloads of different applications
 - Leave 'extra node' for contingency
- How much RAM?
 - A rule of thumb: 2-to-4 GB per CPU
 - From production: Oracle SGA =2.3 GB, PGA aggregate
 1.4GB

PSS Storage Sizing

- How Much Storage do I need?
 - Metrics: TB needed, IOPS and MB/sec
 - Requirements ideally from application owners and from stress testing/experience
- Current guidelines from CERN production
 - 1 TB of 'usable tablespace data' -> ~ 2 (mirrored) storage arrays with 8 disks each
 - IOPS is the most critical metric
 - Consider random I/O (index range scan)
 - 64 disks -> ~7000 IOPS (measured)
 - 8KB Oracle block x 7000 -> 'only' 56 MB/sec

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 10

PSS Storage Configuration - HW

- SAN at low cost (not an oxymoron)
- FC Storage Arrays
 - Infortrend (A08F-G2221)
 - SATA disks
 - FC controller (dual ported, 2GB cache, 8 disks)
- FC switches
 - QLogic SANBox 5600 (4Gbps)
- Qlogic HBAs
 - Dual ported QL2462
- Redundant fiber connections (multipathing)

Department

PSS Storage Configuration - OS

- Device name persistency and multipathing
 - RHEL3: devlabel, asmlib and Qlogic multipathing
 - RHEL4: Devmapper
- DevMapper:
 - 2 rpms shipped with RHEL4
 - Only 1 config file (/etc/multipath)
 - Aliases assigned to devices (names persistency)
 - DM 'block devices' can be used directly by ASM 10g
 - IO performance, DM vs QLogic multipath
 - Measurements with ORION show no difference

Department

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 12

PSS Oracle Cluster Storage, ASM

- Follow the ideas of S.A.M.E. as much as possible
- ASM for mirroring across arrays and striping
- Two diskgroups per DB (data, flash recovery area)
- Destroking: use (mostly) the external part of the disk
- Example:

CERN

CERN

Department

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 13

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

Questions so far? More Q&A at the end of part 2

PSS Consolidation

- Applications are consolidated on large clusters, per experiment
- Cluster resources distributed among applications using Oracle 10g services
 - Each big application is assigned to a dedicated service
 - Smaller applications share services

PSS Deployment

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

 Deployment model depends on the application:

- Model 1: service is run on all cluster nodes (default)
- Model 2: service is assigned to a preferred node (for applications that don't scale well across multiple RAC nodes)
- Validation of applications before deployment in production is vital
 - Validation for new application
 - Validation for each new application release

Switzerland www.cern.ch/it

PSS Backup

- Solid backup and recovery infrastructure:
 - RMAN is proven technology
 - Interfaced with tape backup system (Tivoli)
 - Dedicated machine for scheduling and running backup jobs
 - Well protected RMAN catalog
 - Dedicated hardware for test recoveries

Oracle Architecture at CERN – DB Workshop, Jan 2007 - 18

...and Recovery

- Test recoveries performed on a regular basis
 - Different scenarios:
 - Full recovery
 - Database point in time
 - Tablespace point in time recovery
 - Recovery from controlfile loss
 - RMAN catalog loss
 - Database duplication
 - Different backups
- Comprehensive documentation
- Evaluation of other recovery methods
 - Data Guard
 - Flashback functionality

PSS Security

- Extremely important in a distributed environment
 - Tools:
 - Several features across the RDBMS engine
 - Firewalls
- Actions taken:
 - Hardware and software firewalls
 - Non-default listener port
 - Password protection
 - Password scans
 - Granting minimum set of necessary privileges
 - Profiles
- Quarterly Oracle security patches (CPU)
- OS security patches

Monitoring & Datacenter **Operations**

- HW is deployed in a datacenter
 - Production is on critical power (UPS and diesels)
 - Leverage the expertise of several groups for installation and maintenance
 - One interface with all the vendors
- 24x7 reactive monitoring
 - Sys-admins, Operators
 - Hardware failures, OS problems
 - Net-admins
 - Network infrastructure
 - DBAs
 - DB instance and host availability (home-grown)
 - ASM diskgroups and DB services (see next talk)
- Pro-active monitoring with OEM and Lemon

Backups (home-grown)

Switzerland www.cern.ch/it

CERN - IT Department CH-1211 Genève 23

PSS Conclusions

- Positive experience after 1.5 years of production
- 10gR2 RAC and ASM on commodity HW
- Currently ~220 CPUs, ~1100 HDs
- 6 DBAs
- Links:
 - http://www.cern.ch/phydb
 - http://twiki.cern.ch/twiki/bin/view/PSSGroup

– http://twiki.cern