

A Latency Picture is Worth a Thousand Storage Metrics

Luca Canali – CERN

Hotsos Symposium 2014

About Me

- Senior DBA and Team Lead at CERN IT
 - Joined CERN in 2005
- Working with Oracle RDBMS since 2000
- Sharing knowledge with the Oracle community
- Home page: http://cern.ch/canali
- Blog: http://externaltable.blogspot.com
- Twitter: @LucaCanaliDB

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

CERN

- European Organization for Nuclear Research founded in 1954
- Membership: 21 Member States + 7 Observers
- 60 Non-member States collaborate with CERN
- 2400 staff members work at CERN as personnel + 10000 researchers from institutes world-wide

LHC, Experiments, Physics

- Large Hadron Collider (LHC)
 - World's largest and most powerful particle accelerator
 - 27km ring of superconducting magnets
 - Currently undergoing upgrades, restart in 2015
- The products of particle collisions are captured by complex detectors and analyzed by software in the experiments dedicated to LHC
- Higgs boson discovered!

• The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

WLCG

• The world's largest scientific computing grid

More than 100 Petabytes of data stored in a custom file system and analysed. Increasing: 20+ Petabytes/year

CPU: over 250K cores Jobs: 2M per day

160 computer centres in 35 countries

More than 8000 physicists with real-time access to LHC data

Oracle at CERN

Since 1982 (*accelerator controls*)

More recent: use for Physics

Copyright (c) April 1981 By Relational Software Incorporated All rights reserved. Printed in U.S.A.

Source: N. Segura Chinchilla, CERN

CERN's Databases

- ~100 Oracle databases, most of them RAC
 - Mostly NAS storage plus some SAN with ASM
 - ~500 TB of data files for production DBs in total

- Examples of critical production DBs:
 - LHC logging database ~170 TB, expected growth up to ~70 TB / year
 - 13 production experiments' databases ~10-20 TB in each
 - Read-only copies (Active Data Guard)

A DESCRIPTION OF THE PARTY OF

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

Latency

- Latency, a measure of time.
 - In the context of this presentation: time to access data

Why is Storage Latency Important?

- Performance analysis and tuning:
 - Where is the time spent during a DB call?
 - What response time do the user sessions experience from the DB?
- OLTP-like workloads:
 - Response time can be dominated by I/O latency
 - Examples: index-based access, nested loops joins

Physical Sources of Latency

- Blocking I/O calls:
 - Think access to a large table via an index
 - Random access
 - HDD: head movement and disk spinning latency

What can we do: Hardware

- Current trends for HW
 - Size I/O subsystem for IOPS not TB
 - Large flash cache in storage
 - Flash cards on servers
 - Servers with large amounts of memory
 - Avoid reading from storage!
- A balance act performance vs. cost

What can we do: Software

- Big gains in application/SQL optimization
 - SW optimizations beat HW optimizations most of the times
- Oracle tuning:
 - Understanding when single-block access is or is not optimal
 - Full scan vs. index-based access
 - Hash join vs. nested loops
 - In general: get a good execution plan!

So Where is the Problem?

- DB Admin:
- Storage is slow!

- The problem is with the DB!

- Reality check:
 - Lack of clear storage performance data.
 - Changing database workloads.

Performance Analysis

- Finding the root causes can be hard:
 - Applications are slow because of storage?
 - Or Storage is slow because overloaded by a runaway application?
- We want to build a model of what is happening
 - That can be proven with data
 - That we can use for tuning

Transactional Workload

• We will focus on systems like this example (OLTP):

- DB time dominated by 'db file sequential read'
 - CPU usage is not a bottleneck
 - We can ignore locks and other serialization events

Wait Event Drill-Down

- What is available?
 - Drill down on 'db file sequential read' wait event data
 - Using event histogram data
- What can we gain?
 - Make educated guesses of what is happening on the storage
 - Attack the root causes when investigating performance problem

A Story From Production

- Migrated to a new storage system
 - NAS storage with SSD cache
 - Good performance: because of low-latency reads from SSD
- Issue:
 - From time to time production shows unacceptable performance
- Analysis:
 - The issue appears when the backup runs!

Wait Event Drill Down

Very slow reads appear

Reads from SSD cache go to zero

Our Analysis

- AWR data used to examine the issue
 - DBA_HIST_EVENT_HISTOGRAM
 - Wait event: db file sequential read
- I/O slow during backups
 - because fewer I/O requests were served from SSD

- Note on how we worked around this issue
 - Short term: moved backup to Active Data Guard Medium term: upgraded filer model

Real-Time Monitoring

- Problem:
 - Hourly AWR average is often too coarse
 - How to perform real-time monitoring of the event latency?
- Answer: data from GV\$EVENT_HISTOGRAM
 - CLI script to compute deltas from cumulative counters

Monitoring Latency - Snapshots

Custom script: ehm.sql

primary:syst	em@orclrac1	> @e	ehm 60) db%s	equen [.]	tial				
waiting for	60 sec (del	ta n	neasui	rement	inte	rval =	= 60 sec)			
Wait (ms)	N#	Eve	ent				Last updat	te time		
1	12588	db	file	seaue	ntial	read	20-NOV-13	04.52.02.549024	РМ	+02:00
2	638	db	file	seque	ntial	read	20-NOV-13	04.52.02.323209	PM	+02:00
4	241	db	file	seque	ntial	read	20-NOV-13	04.52.00.017278	PM	+02:00
8	1032	db	file	seque	ntial	read	20-NOV-13	04.52.02.407010	ΡM	+02:00
16	6128	db	file	seque	ntial	read	20-NOV-13	04.52.02.520877	ΡM	+02:00
32	3865	db	file	seque	ntial	read	20-NOV-13	04.52.02.526403	ΡM	+02:00
64	622	db	file	seque	ntial	read	20-NOV-13	04.52.02.475484	ΡM	+02:00
128	48	db	file	seque	ntial	read	20-NOV-13	04.52.02.454875	ΡM	+02:00
256	2	db	file	seque	ntial	read	20-NOV-13	04.51.35.738163	ΡM	+02:00
512	1	db	file	seque	ntial	read	20-NOV-13	04.51.54.617231	ΡM	+02:00
1024	13	db	file	seque	ntial	read	20-NOV-13	04.52.01.560293	ΡM	+02:00
2048	Θ	db	file	seque	ntial	read	20-NOV-13	03.19.40.350234	ΡM	+02:00
4096	Θ	db	file	seque	ntial	read	15-NOV-13	02.25.22.371191	AM	+02:00
8192	Θ	db	file	seque	ntial	read	31-0CT-13	01.01.10.757675	AM	+02:00
16384	Θ	db	file	seque	ntial	read	28-0CT-13	11.51.50.122887	ΡM	+02:00
32768	Θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.599088	ΡM	+02:00
65536	Θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.601458	ΡM	+02:00
131072	Θ	db	file	seque	ntial	read	11-0CT-13	12.42.21.606092	РМ	+02:00
Avg_wait(ms)	N#	Tot	_wait	t(ms)	Event					
о <u>г</u>	25177	21			db 6-1		wontiol -	and		
0.5	201//	214	1095.1		ab 11	te se	quentiat re	eau		

Script can be downloaded from: http://cern.ch/resources.htm

Monitoring Latency - Snapshots

primary:system@orclrac1> Cehm 60 db%sequential

Wait (ms)	NII	Event	
1 2 4 8 16 32 64 128 256 512 512 28 48 9 6 4 8 192	15958 1317 1355 2590 9845 8339 1607 124 7 1 15 0 0 0 0 0	db file sequential read db file sequential read	
Avg_wait(ms)	NI	Tot_wait(ns) Event	
10.3	41159	423786 db file sec	quential r

Wait (ms)	NE	Event
1 2 2 8 16 16 16 12 16 2 10 2 10 2 10 2 10 2 10	16 61 238 930 2427 7488 20352 20352 814 20 814 20 814 20 814 20 8	db file sequential read db file sequential read
8192 16384 32768 65536 131872		db file sequential read db file sequential read db file sequential read db file sequential read db file sequential read
Avg_wait(ms)	NI	Tot_wait(mp) Event
53.4	43992	2350745.9 db file sequential re-

Checkpoint #1

- Average latency can hide details
 - Multi-modal distributions in modern storage (think HDD arrays with large SSD cache)
- How-to drill down on the latency dimension:
 - Use Latency histograms
- Take care of the time dimension too:
 - Collect data over short time intervals

Display Latency Data over Time

- It's a 3D visualization problem:
 - (1) Latency bucket, (2) time, (3) value
- Heat Map representation
 - Used for example in Sun ZFS Storage 7000 Analytics
 - Reference: Brendan Gregg, Visualizing system latency, Communications of the ACM, July 2010

Heat Maps

- Definition:
 - graphical representation of data where the individual values contained in a matrix are represented as colors (wikipedia)
- Examples:

- X=time, Y=latency bucket
- Color=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Color=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Color=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Color=events per second (e.g. IOPS)

- X=time, Y=latency bucket
- Color=events per second (e.g. IOPS)

Time-Waited Histogram

- How much time do we wait in a given bucket?
 - Not directly available in gv\$event_histogram
- How to estimate it? Example:
 - 100 waits in the bucket 8ms means
 - Wait time between 100*4 ms and 100*8 ms
 - Approximate: 100 * 6 ms [that is 100 * ³/₄ * 8 ms]
- Definition:
 - Intensity = 0.75 * bucket_value * frequency_count

Latency Heat Maps - Intensity

- X=time, Y=latency bucket
- Color= intesity [time waited per bucket]

Checkpoint #2

- Heat Maps
 - A representation of latency histograms over time
- Frequency Heat Map
 - IOPS details per latency bucket and time
- Intensity Heat Map
 - Time waited details
 - Visual representation of the weight of each bucket

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

Stress Testing

- Use case:
 - Investigate HW performance
 - Compare different systems
 - Example: compare current storage with a new system
- It can be hard:
 - Choosing test workloads that are representative of production usage
 - Understanding the effects of caching

SLOB 2

- An Oracle-based stress testing tool
 - Search: "SLOB 2 by Kevin Closson"
- Great tool to generate lots of random IO
 - I/O directly from Oracle processes
 - Physical reads
 - Visible as Oracle's wait events db file sequential read
- Size of test data is configurable
- Concurrency is configurable

Example: "Too Good To Be True"

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

- 23 SAS disks
 delivering 20K IOPS?
- It doesn't make sense
- Latency is the clue
- Reads served by controller cache!

- Wait event: db file sequential read (e.g. use to analyze single block read latency).
- Lesson learned: test data size was too small

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event histogram

Sample num:55, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Example: "Too Good To Be True"

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

- 23 SAS disks
 delivering 21K IOPS?
- It doesn't make sense
- Latency is the clue
- Reads served by controller cache!

- Wait event: db file sequential read (e.g. use to analyze single block read latency).
- Lesson learned: test data size was too small

Example: "Load Till Saturation"

)raLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event_histogram

23 SAS disks JBOD & ASM

4 consecutive tests with increasing load

Sample num:105, latest sampling interval: 10.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: don't accept IOPS numbers without latency values

OraLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event histogram

Sample num:105, latest sampling interval: 10.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Example: "Load Till Saturation"

)raLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Heat map representation of db file sequential read wait event latency from gv\$event_histogram

23 SAS disks JBOD & ASM

4 consecutive tests with increasing load

Sample num:105, latest sampling interval: 10.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: db file sequential read (e.g. use to analyze single block read latency).

Lesson learned: don't accept IOPS numbers without latency values

IOPS and Latency are Related

- Observation: as IOPS approach saturation latency increases very fast
- Data fits a simple model from queueing theory:

0.5 TB dataset, 100% in SSD cache, 56 sessions, random reads - NAS system

10TB dataset, 128 sessions, random reads, onset of disk I/O saturation - NAS

Sample num: 92, Delta time (sec): 3.0, Date: 30-SEP-13 07.43.48.097197 PM +02:00 Label: db file sequential read latency data from gv\$event histogram

Monitoring Production Systems

- Understand I/O response time
 - Help for tuning and capacity planning
 - Attack questions like: is the storage slow?
- Drill down on three areas:
 - I/O served by SSD/controller cache
 - I/O served by physical disks 'spindles'
 - I/O with very large latency: outliers

An Example of a Loaded Storage

Label: db file sequential read latency data from gv\$event histogram

Example Analysis

- Are disks close to saturation?
 - NO, but latency high (SATA disks)
- I/O outliers?
 - YES, Further investigation on controller needed
- Do we have SSD/cache?
 - YES, ~30% reads with low latency
 - We could profit from a larger SSD cache maybe?

Heat Maps for Log File Sync

Example from a production system

Low latency from writes because of storage cache

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

Heat map representation of log file sync wait event latency from gv\$event histogram

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

Heat Maps for Log File Sync

Example from a production system

Low latency from writes because of storage cache

Sample N.155, Latest sampling interval: 3.8 sec

Top graph: Number of wait events per second as vs. time and latency bucket. Palette=six shades of blue Bottom graph: Estimated time in waiting per second vs. time and latency. Palette=yellow-to-red Wait event under study: log file sync (e.g. use to analyze commit latency).

Log File Sync Troubleshooting

)raLatencyMap v1.1 May 2013 - Luca.Canali@cern.ch

Anomaly, on a test system

High latency caused by high load from Oracle and a few faulty HW components

ample num:154, latest sampling interval: 3.5 sec

Top graph: x=time, y=latency bucket, color=N# of wait events per second. Palette=six shades of blue. Bottom graph: x=time, y=latency bucket, color=estimated time waited per sec. Palette=yellow-to-red. Wait event: log file sync (e.g. use to analyze commit latency).

Checkpoint #3

- IOPS data alone can be misleading because of saturation effects
 - Need IOPS with latency breakdown
- We can get insights on the storage performance
 - With latency histograms and heat map visualization
 - Analysis of random reads by drilling down 'db file sequential read'
 - Use this method also for commit wait: 'log file sync'

Limitations of Using Wait Events

- Wait event timing is done by the Oracle code
 - May not reflect actual I/O response time
 - CPU time may also be accounted as I/O wait
 - Server high load can distort the timing values
 - V\$event_histogram lowest bucket is 1 millisecond

Random Reads

- Db file sequential read
 - Is the easiest event to relate to I/O service time
 - Instruments single-block reads, blocking I/O

- Limitations:
 - In some cases Oracle can use async I/O for random reads, e.g. for prefetching and batching.
 - The wait event used in that case is 'db file parallel read'

Log File Sync

- Log file sync
 - Big part of the commit-time wait
 - Complex: it's not a pure I/O event
- The root causes of high latency for log file sync can be
 - CPU starvation
 - LGWR behaviour
 - with inter-process communication and/or bugs
- See also Kevin Closson's blog

Limitations for Multi-Block I/O

- Asynchronous I/O
 - Wait events of this family are very hard or impossible to utilize precisely in the context of latency
 - See Frits Hoogland's work
- Multi-block I/O
 - Hard to compare latency for I/Os of different sizes
- Keeping in mind these limitations.
 - Heat maps of db file parallel write can be used to study DBWR performance issues (e.g. high write latency)

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

Tools

- Automate tedious tasks
 - Data collection
 - Visualisation
- Three tools I have built and shared:
 - PerfSheet4 -> AWR analytics
 - OraLatencyMap -> Heat Maps in SQL*Plus
 - PyLatencyMap -> Advanced version

Tools: PerfSheet 4

- Simple analytic platform for AWR data
- Predefined queries and graphs
- Power of Pivot Charts

Tools: PerfSheet 4

🔀 🔄 🕫 - 😢 PerfSheet4_v3.4.xlsm - Microsoft Excel														-	• 23								
File	Home	Insert Page I	ayout	Formulas	5 Data	Review	View	Developer	Acrobat											۵	- 9	₽ X	
Ē,	K Cut		Ŧ	11 •	A A I	= =	= »·	📑 Wrap Text		General	-	- NHA		-			Σ AutoSum	T AT	A				
Paste	🕼 Copy 🖇 Format Pa	ainter B Z I	-	- 🔕	- A -	E = 3		Merge &	Center -	0. 0	g Condi Forma	tional F tting *	ormat as Cell Table × Styles ×	Insert *	Delete	Format	∠ Clear *	Sort & Filter *	Find & Select *				
Clip	oboard	Fa	Font		Fa		Alignm	ent	Fa	Number	5	S	tyles		Cells			Editing					
f Perfsheet 4 is a performance tool for Oracle AWR analytics in Excel															~								
	A B C D E F												Н										
1	/										$\overline{\ }$		Perfsheet 4 i	is a peri	forman	ce tool	for Oracle	AWR ana	lytics in	Excel			
3	/	Target DB Username: system									Authors: Luca.Canali@CERN.ch, Tanel@TanelPoder.com												
4	1	Password: ******											Version: 3.4 (March 2013, latest minor changes in Jan 2014)										
5		DB alias: ORCL											Additional credits: DB_Group@CERN, Rhojel Echano, Hans-Peter Sloot										
6		Query : Wait events (dba_hist_system_event)											Tested on: Oracle RDBMS 11.2 and 12.1, Excel 2010										
7		Time filter: Wait events (dba_hist_system_event)																					
8	Run Show SQL:					QL: S	Stats per service (dba_hist_service_stat)						Getting started video:										
9							Workload data (dba_hist_sysmetric_summary)						http://ww	vw.you	tube.co	<u>CLZWIw</u>							
10	Top 5 wait per instance (dba hist system event)																						
11						v	/ait event	s per class (c	lba_his	t_system_event)			Usage:									=	
12	Plot Data Load from csv Export to csv										Step 1: Load data into Excel												
13													Edit database credentials										
14													Click on the Target DB icon "Run" to fetch AWR data into Excel										
15													Alternative: run one of the supplied sql*plus scripts and "Load from csv"										
16													Step 2: Plot data										
1/													Note: pre-defined graphs are available for the quarter provided with this tool										
19													Note: pre defined graphs are available for the queries provided with this tool										
20		e pre-defined g	aphs:									/											
21												,											
22																							
23																						-	
	Main Z	Queries / Data	Pivot	Notes	; /2/											Ш							
Ready																			100%			-+) .::	

Tools: PerfSheet 4

Tools: OraLatencyMap

- Run on SQL*Plus, core written in PL/SQL
 - Lightweight, does not require any installation
 - Command line interface
 - Heat maps generated using ANSI escape codes
- Getting started:

SQL> @OraLatencyMap

Tools: PyLatencyMap

- It's written in Python + SQL*Plus scripts
 - No installations required, CLI, lightweight
 - It's an advanced version of OraLatencyMap
- Can be used for generic latency sources
 - Oracle v\$, trace files, AWR, DTrace data, etc
 - Pre-built examples available
 - Additional features: record and replay

Getting Started with PyLatencyMap

- Modular architecture
 - Source | <optional filter> | visualization engine
- Getting started

\$./Example1_oracle_random_read.sh

- Video, getting started with PyLatencyMap
- <u>http://www.youtube.com/watch?v=-YuShn6ro1g</u>

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

More Latency Sources

- Latency can be collected from various other sources
 - From the OS
 - From Oracle RDBMS trace files and X\$ tables
 - From the storage instrumentation

OS Level

- DTrace
 - Great performance tool, coming to Linux too
 - Naturally fits to gathering I/O latency data
 - Histograms collected with the quantize operator

```
dtrace -n '
syscall::pread64:entry { self->s = timestamp; }
syscall::pread64:return /self->s/ { @pread["ns"] =
quantize(timestamp -self->s); self->s = 0; }
tick-10s {
printa(@pread);
trunc(@pread);
}'
```


More DTrace

- DTrace Oracle executable for wait event data
 - This scripts uses the DTrace PID provider

```
dtrace
        -n '
pid2349:oracle:kews update wait time:entry,pid2350:oracl
e:kews update wait time:entry {
     self->ela time = arg1;
pid2349:oracle:kskthewt:entry,pid2350:oracle:kskthewt:en
try {
     @event num[arg1] = quantize(self->ela time);
tick-10s {
printa(@event num);
trunc(@event num);
} '
```


Sample DTrace Output

1 29409	9 :tick-10s	
146	(edited: db file sequential read)	
value	Distribution	count
128		0
256	9	14
512	0000	120
1024	@ @ @ @ @ @ @ @	182
2048	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	320
4096	@ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @	302
8192		5
16384		4
32768		0

dtrace -s DTrace/pread_tracedata.d |python
DTrace/dtrace_connector.py |python LatencyMap.py

Latency From 10046 Trace Files

- Latency data is available in 10046 trace files
 - Wait event data with micro second precision
 - Allows the drill-down to session level

SQL> exec dbms_monitor.session_trace_enable(sid,serial#)

• Snippet from the trace file:

nam='db file sequential read' ela= 977 file#=7
block#=29618220 blocks=1 obj#=82015 tim=1377520823036634

Plug into PyLatencyMap for heat map display

cat tracefile.trc| python 10046_connector.py |python
LatencyMap.py

Sampling Instead of Tracing

- We want to process a stream of wait events
- ASH data OK but sampling frequency too low
 - Not fast enough for capturing all I/O events
 - "_ash_sampling_interval"=1000 -> 1 Hz
- I propose a different method:
 - High frequency sampling of v\$session_wait_history
 - 10 latest wait events for each session
 - "_session_wait_history"=10

Latency Data From X\$KSLWH

- V\$session_wait_history is based on X\$KSLWH
- Use X\$KSLWH as ring buffers indexed by SID
 - Extract all captured wait events, wrap on kslwhwaitid

kslwhsid	kslwhwaitid	kslwhetext	kslwhetime		
42	21016	db file sequential read	300		
42	21015	db file sequential read	1000		
42	21014	db file sequential read	16000		
42	21013	db file sequential read	400		

Selected columns from X\$KSLWH:

Custom Event Histograms

- X\$KSLWH sampling with a custom python script
 - SIDs as input, latency histograms as output
 - Latency is measured in microseconds

```
$ python event_sampler_latency_histogram.py -i 3 -c
sampling rate: 6333 Hz, iops: 10396
bucket (microsec), wait count
...
256 , 20535
512 , 7708
1024 , 1923
2048 , 129
4096 , 78
```


Sampling Events and Heat Maps

- Heat maps from X\$KSLWH
 - High frequency sampling of 16 busy SLOB sessions

NetApp ONTAP 8

- Latency data from the storage OS
 - Latency measured at the source

mynas::> system node run -node dbnas1 stats show -r -n
100 -i 3 volume:myvol1:nfs_protocol_read_latency

volume:myvol1:nfs_protocol_read_latency.<20us:2656 volume:myvol1:nfs_protocol_read_latency.<40us:25885 volume:myvol1:nfs_protocol_read_latency.<60us:1040 volume:myvol1:nfs_protocol_read_latency.<80us:95 volume:myvol1:nfs_protocol_read_latency.<100us:16 volume:myvol1:nfs_protocol_read_latency.<200us:14 volume:myvol1:nfs_protocol_read_latency.<400us:11 volume:myvol1:nfs_protocol_read_latency.<600us:1043 volume:myvol1:nfs_protocol_read_latency.<800us:37</pre>

Outline

- CERN and Oracle
- Storage latency investigations and Oracle
- Examples
- Tools
- More sources of latency data
- Conclusions

Summary

- I/O latency data
 - Allows DBAs to get insights on storage performance
 - We need histograms, average latency is not enough
- 'Db file sequential read' event histogram
 - Great for investigations of random reads
 - Visualize data using latency heat maps
- Scripts to automate this process in Oracle:
 - Download OraLatencyMap or PyLatencyMap

Wish List:

- More awareness of I/O latency
 - No more IOPS data without latency values!
 - 'Average latency' hides details, use histograms instead
- We need more features for measuring and analysing I/O latency for Oracle DB workloads
 - A PL/SQL interface?
 - **DTrace** static probes for Oracle RDBMS?
- OEM could make use of Heat Maps for I/O studies
- V\$event_histogram should be extended
 - Latency details extended to the microsecond bucket

Acknowledgements

- CERN Database Group
 - In particular for their contributions to this presentation: Marcin Blaszczyk and Ruben Gaspar
- Many thanks for sharing their work and ideas to:
 - Brendan Gregg, Tanel Poder, Kevin Closson, Frits Hoogland, Marcin Przepiorowski, James Morles, Kyle Hailey, Cary Millsap

Thank you!

Luca.Canali@CERN.ch Download scripts and tools from: http://cern.ch/canali/resources.htm

Hotsos Symposium 2014

www.cern.ch