Data Analytics – Use Cases, Platforms, Services

ITMM, March 5th, 2018 Luca Canali, IT-DB

Analytics and Big Data Pipelines – Use Cases

- Many use cases at CERN for analytics
 - Data analysis, dashboards, plots, joining and aggregating multiple data, libraries for specialized processing, machine learning, ...
- Communities
 - Physics:
 - Analytics on computing data (e.g. studies of popularity, grid jobs, etc) (CMS, ATLAS)
 - Development of new ways to process ROOT data, e.g.: data reduction and analysis with spark-ROOT by CMS Bigdata project, also TOTEM working on this
 - IT:
 - Analytics on IT monitoring data
 - Computer security
 - BE:
 - NX CALS next generation accelerator logging platform
 - BE controls data and analytics
 - More:
 - Many tools provided in our platforms are popular and readily available, likely to attract new projects
 - E.g. Starting investigations on data pipelines for IoT (Internet of Things)

"Big Data": Not Only Analytics

- Data analytics is a key use case for the platforms
- Scalable workloads and parallel computing
 - Example work on data reduction (CMS Big Data project) and parallel processing of ROOT data (EP-SFT)
- Database-type workload also important
 - Use Big Data tools instead of RDBMS
 - Examples: NXCALS, ATLAS EventIndex, explorations on WINCC/PVSS next generation
- Data pipelines and streaming
 - See example of monitoring and Computer security (Kafka development with help of CM)
 - Also current investigations on IoT (project with CS)

New IT Monitoring

Critical for CC operations and WLCG

- Data now 200 GB/day, 200M events/day
- At scale 500 GB/day
- Proved effective in several occasions

Credits: Alberto Aimar, IT-CM-MM

CĖRN

Computer Security intrusion detection use cases

Example, **BE-NXCALS**

Many parts

- Streaming •
- Online system •
- APIs for data • extraction and analytics
- Note:
- This will replace and enhance current platform based on RDBMS

NXCALS Architecture

ATLAS EventIndex

- Searchable catalog of ATLAS events
 - First "Big Data" project in our systems
 - Over 80 billions of records, 140TB of data

Goal: Meet Use Cases With Managed Services for Data Engineering and Analytics

- Platform
 - Capacity planning and configuration
 - Define, configure and support components
 - Use tools and ideas from "Big Data"/ open source communities
- Running central services
 - Build a team with domain expertise
 - Share experience, provide consultancy
 - Economy of scale

Highlights of "Big Data" Components

• Apache Hadoop clusters with YARN and HDFS

APACHE

- Also HBase, Impala, Hive,...
- Apache Spark for analytics
 - Apache Kafka for streaming
- Data: Parquet, JSON, ROOT
- UI: Notebooks/ SWAN

Tools and Platforms – Ecosystem is Large

- Many tools available: from HEP + other sciences + open source
 - Challenges and opportunities: build your solution + expect natural evolution
 - Components are modular, users adoption and traction drives efforts

• Data formats: ROOT, Parquet, JSON,... CVMFS 3

Hadoop Clusters at CERN IT

- 3 current production clusters
 - + environments for NXCALS DEV and HadoopQA
- A new system for **BE NXCALs** (accelerator logging) platform
 - Currently being commissioned

Cluster Name	Specification	Primary Usage
Ixhadoop	18 nodes (cores - 520,Mem - 701GB,Storage - 1.29 PB)	ATLAS EventIndex
analytix	40 nodes (cores - 1224,Mem - 4.11TB,Storage - 4.32 PB)	General Purpose
hadalytic	12 nodes (cores - 364,Mem - 580GB,Storage - 2.081 PB)	Development Cluster (old BE prod)
NxCALS	24 nodes (cores - 1152,Mem - 12TB,Storage - 4.6PB,SSD - 92 TB)	Accelerator Logging Service

Workload Metrics

Projects and Activities

- Spark integration with SWAN (Jupyter notebook service)
- Spark for HEP (CMS Big Data, Spark and EOS)
- Kafka Service and Self-service tools
- Kudu: online and analytics, best of HBase and HDFS?
- Spark as a service (Spark and Kubernetes)
- Courses, consultancy, forums, workshops and conferences, documentation, etc

Spark for Physics

- Promising results
 - See ACAT 2017: "CMS Analysis and Data Reduction with Apache Spark"
 - Processing ROOT data using Big Data tools (Spark)
 - Aligned with the goals of the HEP software foundation activities
- Currently working with CMS Bigdata and Intel on openIab
 - Developed Hadoop-XRootD connector (read EOS from Spark)
 - Working on large-scale reduction and analysis
- Also collaborating with Totem

Spark as a Service and Cloud

- Exploring Spark on Kubernetes
 - Separate compute cluster from storage
 - Already used in industry, now mainstream with latest Spark
 - Exploration phase for us at this stage
- Motivations
 - Can this help to scale out on large workloads and help streamline resource allocations?
- Context
 - For the use case of using Spark to process physics data on EOS, running Spark on Hadoop with HDFS has limited advantages
 - Spark is basically a library and needs a cluster manager: YARN/Hadoop, Mesos, Stand-alone, since Q1 2018 also Kubernetes

Spark Integration with SWAN – Towards an Analytics Platform

- Goal: become go-to platform for analytics at CERN
 - Lower the barrier to start doing analytics and provide a preconfigured environment with the most used tools
- Integration of SWAN with Spark clusters in IT
 - Key component for BE-NXCALS: chosen as user interface
 - Already used by several pilot users too, for example for monitoring data analytics
 - opening to all users later in 2018. Currently SWAN default for Spark is to use "local mode" (no cluster)
 - Joint efforts with EP-SFT, IT-ST, IT-CM on integrating functionality, security and monitoring aspects

Jupyter Notebooks and Analytics Platforms

Apache Spark

LHCb Opendata

This notebok illustrates a nice interplay between LHCb Opendata, Spark and ROOT - all teaching interesting flavour Physics!

Plotting a feature:

You can plot any feature of the data in a histogram. Choose any suitable binning that allows you to observed the distribution of the variable clearly. a histogram for the first kaon candidate's momentum x-component (H1_PX):

In [8]: # Plot a histogram of the distribution of the H1_PX variable, using Pandas

This is a basic solution that moves all the data from the Spark DataFrame
into a Python Pandas DataFrame. It's OK for small sata sets, but it has scalability issues

hlpx_data = sim_data_df.select("H1_PX").toPandas() # select H1_PX data and moves it to Pandas hlpx_data.plot.hist(bins=31, range=[-150000, 150000], title="Histogram - distribution of H1_PX, simulation data") xlabel('H1_PX (Mev/c)') ylabel('Count');

SWAN Customisation

Specify the parameters that will be used to contextualise the container which is created for you. See the online SWAN guide for more details.

Software stack more

89	~	

Platform more.

x86_64-sic6-gcc49-opt

Environment script more

e.g. \$CERNBOX_HOME/MySWAN/myscript.sh

Number of cores more ...

Number of cores to associate to the container.

Spark cluster more ...

Hadalytic

1

Start my Session

Jupyter Notebooks and Analytics Platforms

Bringing Database Workloads to Big Data

- Goal: migrations from RDBM to "Big Data"
 - Technically challenging: need systems that can perform "Hybrid transactional/analytical processing" (HTAP)
 - Not all workloads can fit, but when applicable can provide gain in performance and reduced cost
- Technology exploration:
 - Apache Kudu: a storage system that can be used with Big Data tools, with Indexes and columnar features
- Testing: next gen ATLAS Event Index, next gen WINCC (PVSS) archiver

Users and community

- Develop value of the services for users and community
 - We have developed and delivered short courses on Spark and Hadoop
 - More session(s) scheduled in 2018 + planning course on Kafka
 - Plannig -> presentations at relevant forums (ASDF, IT Tech, ITUM)
 - Consultancy and projects with relevant communities
- Linking with communities outside CERN
 - Contacts with industry and open source communities
 - (Intel openlab, conferences, etc)
 - Others in HEP: Already contacted selected T1s and other centers (Sara, BNL, Princeton) in 2017 for sharing ideas on Hadoop config + CMS Bigdata (Fermi Lab, Princeton, Padova) + TOTEM (team in Warsaw)
 - Potential: contacts with "other sciences" (astrophysics, biology/medical)

Challenges

- Platforms
 - Provide evolution for HW currently plan to do "rolling upgrades" of ~ 25% of the platform yearly, some of the current HW is quite old
- Service
 - Build robust service for critical platform (NXCALS and more) using customintegrated open source software solutions in constant evolution
 - Support production services (IT monitoring, Security, EventIndex)
 - Evolve service configuration and procedures to fulfil users needs
 - Further grow value for community and projects
 - Knowledge and experience
 - Technology keeps evolving, need to learn and adapt quickly to change

Conclusions

- Hadoop, Spark, Kafka services
 - Unified support, engineering and consulting
 - Started work for specific use cases, experience led to opening central services to more communities (Hadoop and Spark, Spark on SWAN)
- Production service support
 - **BE-NXCALS,** critical service starting in 2018
 - Support for IT-Monitoring, Security and ATLAS EventINdex
 - Still developing and streamlining services (configuration, monitoring, backup, tools, etc)
- Growing value for user communities
 - Developing projects
 - Openlab with CMS Big Data and Intel for Physics analysis and data reduction with Spark
 - Evolution of WINCC/PVSS and Atlas EventIndex
 - Leverage experience and bring solutions around Big Data to a growing community
 - Lower barrier to entry (Spark on notebook), organize courses, presentations, and knowledge sharing activities in general