Big Data Tools and Pipelines for Machine Learning in HEP

CERN-EP/IT Data Science Seminar
December 4th 2019
Luca Canali, Hadoop and Spark Service, IT-DB, CERN

Why “Big Data” Ecosystem for HEP?

- Platforms, tools and R&D

« Large amounts of innovation by open source
communities, industry, academia

« Address key challenges for data intensive domains
* Lower cost of development and licensing

- Use of mainstream technologies (Data, ML/Al)
« Create opportunities for collaboration
With other sciences (astronomy, biology, etc) + with industry

« Talent flow: job market for data scientists and data
engineers

Data Engineering to Enable Effective ML

- From “Hidden Technical Debt in Machine Learning
Systems”, D. Sculley at al. (Google), paper at NIPS 2015

Machine o
Resource Monitoring
. Management
Configuration Data Collection Serving
E Infrastructure
Analysis Tools
Feature
_ Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

3

Use Case: End-to-End ML Pipeline

Particles Classifier Using Neural Networks

- R&D to improve the quality of filtering systems
« Develop a “Deep Learning classifier” to be used by the filtering system
- Goal: Identify events of interest for physics and reduce false positives

False positives have a cost, as wasted storage bandwidth and computing

. “Topology classification with deep learning to improve real-time event selection at the
LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

R&D — Data Pipelines

- Improve the quality of filtering systems
« Reduce false positive rate

- Complement or replace rule-based algorithms with
classifiers based on Deep Learning

- Advanced analytics at the edge
« Avoid wasting resources in offline computing
« Reduction of operational costs

Data Flow at LHC Experiments

40 million 100,000 1,000
collisions selections selections
per PB/s per per
second second second

—
£
]

This can generate up to a petabyte of raw data per second

Reduced to GB/s by filtering in real time
;g’W Key is how to select potentially interesting events (trigger systems).

L

Deep Learning Pipeline for Physics Data

Read physics Prepare 1. Specify model Train the best
data and input for topology model
feature Deep 2. Tune model

engineering Learning topology on

small dataset

network
APACHE JZI

Spr . Technology: the pipeline uses Apache Spark + Analytics Zoo and
TensorFlow/Keras. Code on Python Notebooks.

@) ;

CERN SWAN with Apache Spark,
a Data Analysis Platform at Scale

s_
Integrating new “Big Data” Jupyter
components with existing o~
infrastructure: 1
- Software distributon V. J\z
. Data platforms SprK

Experiments storage

\ a y
N \ — D
'.Cﬁ'lnadatap HDFS
HDES]
\ J
@ gt ()
. HEP software @ CERNBox| Personal storage
\ J

Pr—
r ;;(@w

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj0r7aN3dThAhWCbVAKHb1hCsIQjRx6BAgBEAQ&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F538540%2Fcontributions%2F2187138%2Fattachments%2F1282513%2F1906054%2FIT-cernbox-2016-05-31.pdf&psig=AOvVaw2pMudr8fBzgEOu2GjfcgVp&ust=1555508026791340
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiutqHg3dThAhUCPFAKHVErDuQQjRx6BAgBEAU&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F656157%2F&psig=AOvVaw3qNP_2iQRsdOTIFWOKfk_F&ust=1555508199266077

FILE EDIT VIEW INSERT CELL KERNEL HELP Trusted | Python2 O ¢
B+ 3 & B 4+~ ¥ MW B C codk A==t

Do the heavylifting in spark and collect aggregated view to panda DF

In [11]: df_loadAvg pandas = spark.sql("SELECT submitter_host, \
avg(body.LoadAvg) as avg, \

hour(from_unixtime(timestamp / 1808, 'yyyy-MM-dd HH:mm:s5")) as hr \
FROM loadAvg \

WHERE submitter_hostgroup = 'hadoop/itdb/datancde’ \
AND dayofmonth(from unixtime(timestamp / 1088, 'yyyy-MM-dd HH:mm:ss')) = 15 \

GROUP BY hour{from_unixtime(timestamp / 188@, 'yyyy-MM-dd HH:mm:ss')), submitter_host™)\
.toPandas()

90 EXECUTORS 180 CORES

Job ID Job Name Status Submission Time Duration
> 3 toPandas 4 minutes ago 36s

Visualize with seaborn

In [19]: | # heatmap of service availability
plt.figure(figsize=(1@, 6))

ax = sns.heatmap(df_loadAvg_pandas.pivot(index="submitter_host', celumns="hr', values='avg'), cmap="Blues")
ax.set_title("Heatmap of loadAvg")

Out[19]: Text(®.5,1,u'Heatmap of loadAvg')

Heatmap of loadAvg

itrac1501.cemn.ch

12

itrac1502.cem.ch .

itrac1503.cem.ch 1

itrac1504 cem.ch
4 itracl505.cern.ch 8 . I 0 0
&
g Visualizations
litrac1506 cern.ch
o
E
H itrac1507 .cemn.ch 8
]
B itracl508 cem.ch

itrac1509.cemn.ch 4

itrac1510.cemn.ch
itrac1511.cern.ch
itrac1512.cern.ch

01 23 456 78 91011121314 1516 17 1819 20 21 22 23
hr

Spark Clusters at CERN: on Hadoop
and on Cloud

- Clusters run on
« Hadoop clusters: Spark on YARN
« Cloud: Spark on Kubernetes

- Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for Hadoop - YARN — 32 nodes

Accelerator Logging | (Cores - 1024, Mem - 16 TB, Storage — 7.5 PB)

(part of LHC

infrastructure)

General Purpose Hadoop - YARN, 54 nodes

(Analytix + (Cores — 1184, Mem — 21 TB, Storage — 11 PB)
Hadalytic)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem — 2 TB

Storage: remote HDFS or EOS (for physics data)

3N
CI |{.\w
\ \

_/\

Extending Spark to Read Physics Data

- Physics data
« Currently: >300 PBs of Physics data, increasing ~90 PB/year

« Stored in the CERN EQOS storage system in ROOT Format and
accessible via XRootD protocol

- Integration with Spark ecosystem
« Hadoop-XRootD connector, HDFS compatible filesystem
« Spark Datasource for ROOT format

https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

EOS

Storage
Service XRootD Hadoop-

= =%, CERN P] - = ; XRootD
@) ?I:|:"? openlab (l@ ,l W’m | Sl Connector

https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

Labeled Data for Training and Test

. Simulated events

Software simulators are used to generate events
and calculate the detector response

Raw data contains arrays of simulated particles
and their properties, stored in ROOT format

54 million events

” DELPHES

fast simulation

Step 1: Data Ingestion

- Read input files: 4.5 TB from ROOT format

- Feature engineering
- Python and PySpark code, using Jupyter notebooks

- Write output in Parquet format

Input:

54 M events
~4.5TB
Physics data
storage (EOS)

Physics data _
format (ROOT) f)utput.

Events filtering

+
HLF and LLF
dataframes

25 M events
950 GB in Parquet format

7 %, ’
@\ '////Parquet + Target storage (HDFS or EOS) 14

Spark DataFrames — Some Basics

- Data in Apache Spark
« The key abstraction and APl is DataFrame
« Think of it as “a distributed version of Pandas DF”
- Can parallelize/distribute 1/O and operations
« Large choice of data formats for input and output (extendable)
« Cando I/O with HDFS, EQOS, S3, local filesystem, ...

- Scale out: actions operate in parallel with data partition granularity,
run on cluster resources of choice (YARN, K8S, local machine)

myDF = spark.read.format("root") .load("root://eos...")

myDF.count ()

~Z

Feature Engineering

. Filtering
Multiple filters, keep only events of interest
Example: “events with one electrons or muon with Pt > 23 GeVv”

- Prepare “Low Level Features”
. Every event is associated to a matrix of particles and features (801x19)

features = [
'Energy', 'Px', 'Py', 'Pz', 'Pt', 'Eta', 'Phi’,
ik, wix¥', ‘vixZ', 'ChPFIso', 'GammaPFIso', 'MeuPFIso’,
'isChHad', 'isNeuHad', 'isGamma', 'isEle', 'isMu’', 'Charge'

]
- High Level Features (HLF)
« Additional 14 features are computed from low level particle features
. Calculated based on domain-specific knowledge using Python code

<) 16

Step 2: Feature Preparation

Features are converted to formats Feature preparation
- - - Elements of the hfeatures column are list, hence we need to convert them into Vectors . Dense
suitable for training
. . In [10]: from pyspark.ml.linalg‘impml-t Vectors, VectorUDT
. One Hot Encodlng Of Categorles from pyspark.sql.functions import udf

vector_dense udf = udf(lambda r : Vectors.dense(r),VectorUDT())

° MlnMaX Scaler for ngh Level Features data = data.withColumn('hfeatures dense',vector dense udf('hfeatures'))

° SOI’tlng LOW Level Features prepare Input Now we can build the pipeline to scale HLF and encode the labals
for the sequence classifier, using a metric 1 1111: fron pyspark.nl import ripeline

from pyspark.ml.feature import OneHotEncoderEstimator

based On phySICS. ThiS use a Python UDF. from pyspark.ml.feature import MinMaxScaler
One-Hot-Encode

° Undersampllng: use the Same number Of encoder = OneHotEncoderEstimator(inputCols=["label"],

outputCols=["encoded_label"],

events for each of the three categories dropLast-ralse)

I Eesu It scaler = MinMaxScaler(inputCol="hfeatures_dense",

outputCol="HLF_input")
[] 3.6 MIIIIOn events’ 317 GB pipeline = Pipeline(stages=[encoder, scaler]}
. Shuffled and split into training and test s P plptine iRt Bapdes)
CPU times: user 294 ms, sys: 293 ms, total: 587 ms
datasets Wall time: lmin 3ds

° COde: In a Jupytel" nOtebOOk USII’]g In [12]: data = fitted pipeline.transform(data)
PySpark with Spark SQL and ML

CERN
w 17

Performance - Lessons Learned

- Data preparation is CPU bound
« Heavy serialization-deserialization due to Python UDF

- Ran using 400 cores: data ingestion took ~3 hours

- It can be optimized, but is it worth it ?
« Use Spark SQL, or Scala instead of Python UDF

« Optimization: replaced parts of Python UDF code with Spark SQL
and higher order functions: run time, from 3 hours to 2 hours

,//’//////'

FILTER(Electron,

WHERE cardinality(Electron) > @
electron -» electron.PT > 23

OR cardinality(MuonTight) > @
) Electron,

FILTER(MuonTight,

muon -> muon.PT > 23
@)) MuonTight

~Z

18

Development Practices

- Development, start small
« Use a subset of data for development
« Use SWAN or a local laptop/desktop

- Run at scale on clusters
« Same code runs at scale on clusters: YARN, K8S
« Smooth transition, need for some additional config (e.g.
memory)
- APl and code lifecycle
« Spark DataFrame API is stable and popular

@ - Improve collaboration with different teams, reproducibility,
maintainability

19

Neural Network Models

More complexity,

Fully connected feed-forward deep neural
network

Trained using High Level Features (~1 GB of data)

Neural network based on Gated Recurrent
Unit (GRU)
Trained using Low Level Features (~ 300 GB of
data)

Inclusive classifier model
Combination of (1) + (2)

20

Hyper-Parameter Tuning— DNN

- Hyper-parameter tuning of the DNN model
« Trained with a subset of the data (cached in memory)

- Parallelized with Spark, using spark_sklearn.grid_search
And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn

Test - S
= Vodel 42 = E’sest Model
\. J

100k events
k ® 0 0)

Deep Learning at Scale with Spark

- Investigations and constraints for our exercise

- How to run deep learning in a Spark data pipeline?
« Neural network models written using Keras API
« Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)

- Distributed deep learning
« GRU-based model is complex
« Slow to train on a single commaodity (CPU) server

~Z

Spark, Analytics Zoo and BigDL

- Apache Spark APACHE a
. Leading tool and API for data processing at scale Spor

- Analytics Zoo is a platform for unified analytics
and Al ANALYTICS

Runs on Apache Spark leveraging BigDL / Tensorflow

For service developers: integration with infrastructure :@.
(hardware, data access, operations)
For users: Keras APIs to run user models, integration

with Spark data structures and pipelines

framework for Apache Spark

- BigDL is an open source distributed deep learning Big]].

BigDL Runs as Standard Spark Programs

Standard Spark jobs

* No changes to the Spark or Hadoop clusters needed

Iterative

« Each iteration of the training runs as a Spark job

Data parallel

« Each Spark task runs the same model on a subset of the data (batch)

33 Worker § 3 Worker

Spark Standard

%3 Worker 33 VVorker§

BigDL Parameter Synchronization

local gradient local gradient local gradient
HE & BEE B HaE
- L
5 -
gradiéent 1 r gradien
update For each task n in the “parameter synchronization” job
_) o _ shuffle the n~ partition of all gradients to this task
weight 1 - weight 2 [weight n - aggregate (sum) the gradients
Task 1 Task 2 Task n updates ths nm partition of the weights

““““““““““““““ broadcast the n° partition of the updated weights
“Parameter synchronization” job }

Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md

25

CERN ‘

Model Development — DNN for HLF

- Model Is instantiated using the Keras-
compatible API provided by Analytics Zoo

In [7]: # Create keras like zoo model.
Only need to change package name from keras to zoo.pipeline.api.keras

from zoo.pipeline.api.keras.optimizers import Adam
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import Dense, Activation

model = Sequential()

model.add(Dense(50, input shape=(14,), activation='relu'})
model.add (Dense(28, activation='relu'})
model.add(Dense(16, activation='relu'))

model.add(Dense(3, activation='softmax'))

creating: createZooKerasSequential
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense

) .

)

Model Development — GRU + HLF

A more complex network topology, combining a GRU of Low Level Feature + a
DNN of High Level Features

from zoo.pipeline.api.keras.optimizers import Adam s
from zoo.pipeline.api.keras.models import Sequential PFeand, HPF,M.,(,,% ‘{p}:cund“m ‘
from zoo.pipeline.api.keras.layers.core import *
from zoo.pipeline.api.keras.layers.recurrent import GRU l l l
from zoo.pipeline.api.keras.engine.topology import Merge
Masking ‘

GRU branch
gruBranch = Sequential() \ l

.add(Masking(0.0, input_shape=(801, 19))) \ s

.add (GRU(GRU (50) High-level features (14)

output_dim=5@,
activation="tanh’

NA
.add(Dropout(0.2)) \

HLF branch

hl1fBranch = Sequential() \ Concatenate (64)
.add(Dropout(@©.2, input_shape=(14,)))

Concatenate the branches

branches = Merge(layers=[gruBranch, hlfBranch], mode='concat")

Create the model
model = Sequential() \

Output (3
.add(branches) \
.add(Dense(25, activation="relu’}) \

.add(Dense(3, activation="softmax"')) 27

)

Istributed Training

Instantiate the estimator using Analytics Zoo / BigDL

Create SparkML compatible estimator for deep Learming training

from bigdl.optim.optimizer import EveryEpoch, Loss, TrainSummary, ValidationSummary
from zoo.pipeline.nnframes import *
from zoo.pipeline.api.keras.objectives import CategoricalCrossEntropy

estimator = NNEstimator(model, CategoricalCrossEntropy())\

.setOptimMethod (Adam()) \

.setBatchSize(BDLbatch) \

.setMaxEpoch(numEpochs) \

.setFeaturesCol ("HLF_input™) \

.setlabelCol("encoded label™) \

.setValidation(trigger=EveryEpoch() , wval_df=testDF,

val_method=[Loss(CategoricalCrossEntropy())], batch_size=BDLbatch)

The actual training is distributed to Spark executors

*xtime
trained_model = estimator.fit(trainDF)

Storing the model for later use

modelDir = logDir + '/nnmodels/HLFClassifier’
trained_model.save(modelDir)

10

08

Loss

06

04

1.4

12

10

08

Loss

06

0.4

02

o

HLF classifier loss

—— Training loss
—— Validation loss
500 1000 1500 2000
Iteration
Inclusive classifier loss
—— Training loss

— Validation loss

2000 4000 6000 8000 10000 12000
fteration

28

©

N

Performance and Scalability of Analytics Zoo/BigDL

Analytics Zoo/BigDL on Spark scales up in the ranges tested

Inclusive classifier model DNN model, HLF features
Machine Learning Pipeline:
BigDL Parallelization efficiency in OCI Throughput
201 -@- Actual parallelization efficiency . _"" Cores pﬂe:ecutor
=== Perfect parallelization efficiency ”_,:f,.- 20000 —

_ 18 4 "..-"I__-f
b - l-."
i oy
e = 15000
E 16 4 . ’:::,.- "
E Ay 5
5 s :
214 o @ 10000
o =
i &)

12 'ﬁﬂ'& 5000

ﬂ‘"
0] &
100 120 140 160 180 0 1 3 5 g 10
Mumber of CPUs (DCPU) Number of executors

29

Workload Characterization

- Training with Analytics zoo
« GRU-based model: Distributed training on YARN cluster
« Measure with Spark Dashboard: it is CPU bound

Executors JVM CPU Utilization (N# cores-equivalent)

equivalent)

2]
o
o
o
o
$*
=
=
c
o
=
@
N
=
=
oo
(&

CERN
N

Results — Model Performance

tt selector
- Trained models with 10
Analytics Zoo and BigDL
0.8 2
- Met the expected results ~ Zos
for model performance: 5
ROC curve and AUC £
0.2 ,,f,,, === HLF classifier (AUC) = 0.9821
— Incusie clossifer (U0C) 2 09528
0'00.:), 0.2 0.4 0.6 0.8 1.0

Background Contamination (FPR)

~Z

Spark + TensorFlow

- Additional tests on different architecture

AAAAAA

Exchange data with TFRecord format
Distributed DL -> +

TensorFlow

~Z

32

Training with TensorFlow 2.0

Training and test data

« Converted from Parquet to TFRecord format using Spark
« TensorFlow: data ingestion using tf.data and tf.io
Distributed training with tf.distribute + tool for K8S: https://github.com/cerndb/tf-spawner

Distributed training with TensorFlow
2.0 on Kubernetes (CERN cloud)

TF 2.0 feature:
tf.distribute.experimental.
MultiWorkerMirroredStrategy

for 10 epochs [min]

ime

350 1

300 1

250

200 1

150 A

100 A

- 024
- 022

i
020 5

(=]
et
[==]

(=]
et
(=]

Loss after 10 epoc

(=]
et
E=1

T
24

-
\‘\ L
_—
—_—
~-A >
.
A
LY
‘-‘--"—t
T
45 72

Number of CPU cores (Broadwell)

33

https://github.com/cerndb/tf-spawner

Performance and Lessons Learned

Measured distributed training elapsed time

. From a few hours to 11 hours, depending on model, number of epochs and batch
size. Hard to compare different methods and solutions (many parameters)

- Distributed training with BigDL and Analytics Zoo
. Integrates very well with Spark
. Need to cache data in memory
. Noisy clusters with stragglers can add latency to parameter synchronization

- TensorFlow 2.0
. It is straightforward to distribute training on CPUs and GPUs with tf.distribute
. Data flow: Use TFRecord format, read with TensorFlow’s tf.data and tf.io

. GRU training performance on GPU: 10x speedup in TF 2.0
)

Training of the Inclusive Classifier on a single P100 in 5 hours 34

Recap: our Deep Learning Pipeline

Data and
models from
Research

Input:
labeled
data and
DL models

@

-
Jupyter
S’

AAAAAA

Feature
engineering
at scale

n [| N
¥ Keras m] L

. Blg Tensor!
Spor‘l’(\z Spoark
Hyperparameter Distributed
optimization model training
(Random/Grid
search)

Output: particle
selector model

35

Model Serving and Future Work

Using Apache Kafka
and Spark?

ANALYTICS

/&0

LI —{ FPGA]—' Output
Output x pipeline:
pipeline '

FPGA serving DNN models

to storage
[further
online
> .
RTL analysis
MODEL |— | translation
36

End-To-End ML Pipeline Summary

- Spark, Python notebooks

« Provide well-known APIs and productive environment for data preparation

- Data preparation performance, lessons learned:
« Use Spark SQL/DataFrame API, avoid Python UDF when possible

- Successfully scaled Deep Learning on Spark clusters
« Using Analytics Zoo and BigDL
- Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud

- Good results also with Tensorflow 2.0, running on Kubernetes
« GPU resources are important for DL

- We have only explored some of the available solutions
- Data preparation and scalable + distributed training are key

37

Services and Resources

38

Users of Big Data Platforms

Many use cases at CERN for analytics
. Data analysis, dashboards, plots, joining and aggregating multiple data, libraries for
specialized processing, machine learning, ...
Communities
. Physics:
« Analytics on computing data (e.g. studies of popularity, grid jobs, file transfers, etc) (CMS Spark
project, ATLAS Rucio)
« Parallel processing of ROOT RDataframes with PyRDF for data analysis

« Development of new ways to process Physics data, e.g.: data reduction and analysis with
spark-ROQOT, more recently Coffea and Laurelin by LHC Bigdata project

« ATLAS Eventindex project
. IT:

Analytics on IT monitoring data

Computer security

. BE:

NXCALS — next generation accelerator logging platform
BE controls data and analytics

Hadoop and Spark Service at CERN IT

- Setup and run the infrastructure

« Support user community
* Provide consultancy
 Doc and training

- Facilitate use
Package libraries and configuration
Client machines + Docker clients
Notebook service integration
https://hadoop.web.cern.ch

@‘ . https://hadoop-user-guide.web.cern.ch

%

Hadoop service iIn numbers

=8 6 clusters £ 40+ TB of Memory

— .
ey <~ 4 production (bare-metal)

¢ 2 QAclusters (VMs) 4000+ physical cores

@ » 140+ physical servers

> HDDs and SSDs

_&d 40+ virtual machines ﬁlﬁi Data growth: ~8 TB per

day
g 28+ PBs of Storage

41

XRootD connector for Hadoop and Spark

* Alibrary that binds Hadoop-based file system APl with XRootD native client
e Developed by CERN IT

* Allows most of components from Hadoop stack (Spark, MapReduce, Hive etc)
to read/write from EOS and CASTOR directly
* No need to copy the data to HDFS before processing
e Works with Grid certificates and Kerberos for authentication

C++ 1 Java

Hadoop
EOS HDFS

Storage Spark

System XrootD - ~ (analytix
I Client -
= Connector @,

42

CERN ‘

Spark as a service on a private cloud

Under R&D since 2018, rolled out in 2019
Appears to be a good solution when data locality is not needed

CPU and memory intensive rather than 10 intensive workloads
Reading from storage systems via network (EOS, S3, “foreign” HDFS)
Compute resources can be flexibly scaled out

Spark clusters — on cloud containers
Kubernetes on Openstack
Spark runs on Kubernetes since version 2.3

Use cases
SWAN integration for users reading from EOS

High demand of computing resources, needing to used cloud resources
Streaming jobs (e.g. accessing Apache Kafka)

/

kubernetes

openstack.

N

SEETKE

43

Spark Clusters at CERN: on Hadoop
and on Cloud

- Clusters run on
« Hadoop clusters: Spark on YARN
« Cloud: Spark on Kubernetes

- Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for Hadoop - YARN — 32 nodes

Accelerator Logging | (Cores - 1024, Mem - 16 TB, Storage — 7.5 PB)
(part of LHC
infrastructure)

General Purpose Hadoop - YARN, 54 nodes
(Cores — 1184, Mem — 21 TB, Storage — 11 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem —2 TB
Storage: remote HDFS or EOS (for physics data)

3N
CI |{.\w
\ \

_/\

Y

SWAN - Jupyter Notebooks On Demand

- Service for web based analysis (SWAN)
« Developed at CERN, initially for physics analysis by EP-SFT

- Aninteractive platform that combines code, equations, text

and visualizations P
« Ideal for exploration, reproducibility, collaboration Jupyter
.\/

Fully integrated with Spark and Hadoop service

« Python on Spark (PySpark) at scale

« Modern, powerful and scalable platform for data analysis
« Web-based: no need to install any software

45

o Spark Integration in the SWAN Architecture

12 2

~ Jupyterhub Web portal

. Spark Worker
Python task

Container Scheduler Python task

[d?k: User 1 [d?‘: User 2 [dg Usern

AppMaster

spak

IT Hadoop and Spark clusters

EOS CVMFS CERNBox
(Data) (Software) (User Files)

CERN Resources

Example Notebooks

https://swan.web.cern.ch/content/apache-spark

M - O

Basic ROOT Primer Accelerator Complex ~ FCC Beam Dynamics Machine Leaming ApacheSpark Outreach

Apache Spark

SWAN: Spark connector and monitor

These notebooks exemplify the usage of SWAN and Spark for analytics and machine learning use cases at CERN.

Analyzing monitoring data Analyzing LHC logging data

D0 e heweiing i spa andcotectsqmged v 1 s OF

AWAKE

Processing ROOT (NanoAOD) files with Distributed ROOT
RDataFrame in Python and Spark (PySpark)

16

Machine Learning with Apache Spark

Amatplatiin natabook

o2 pist 15 o coupte contatntng bins ond coumts foreoch bin
hiec_slgnal, hist bkg - comutehist (data-train, feature- s b, target-"label". nbins-sa, x_1

it e o e e e “ssgnal’)
u RSttt ot b i s

ot strioaion of fa_(tb]8)

IPython core. dtsplay Javascriot cbjects

Distribution of iy

= sgnal
background

Physics analysis with Apache Spark using Coffea and
Laurelin packages

Handwritten Digit Classification using Apache Spark and
BigDL

5. Loss visualization

Al raieg wecan o predomarc auves e v cats, summary and val_summacy vtien”

Min (10]1 Lown = op.acruy(irain, summary.cead._scalar(“ioss”)
TPE B APERD(va)_bimary TeLA.SELLARY P ARERTASY "))

pre.tigorecigatse = (12,170)

e

Loss

Reratons.

a7

Why Spark?

- Data processing at scale
- DataFrames, similar to Pandas
« You cannot “fit the problem on a laptop”

- Machine Learning at scale
- “scikit-learn” at scale

- Data Streaming

- One tool with many features
« Popular API

@) i

~Z

What Can be Improved?

Spark runs natively on JVM

« Python integration is key at CERN. Works OK but
performance still needs to improve

Spark is most useful at scale
« We see many ML tasks that fit in a server

Spark and GPUs
« Work in progress. Horovod on Spark is a possibility

Competition
« Cloud and open source tools: Kubeflow, DASK, ...

CERN
\

49

Areas for Future Development

- Further improve the analytics platform
« Use of cloud resources, also testing public clouds

Integration of GPUs

- Machine Learning
Collect feedback from users communities
Are tools at scale useful?
What are the main use cases?
What is missing in the platform?

Conclusions

- End-to-end pipeline for machine learning

« Developed with Apache Spark, BigDL and
Tensorflow, using Jupyter/Python,

- Big Data tools and platforms at CERN

« For data analysis, machine learning and streaming
« Run at scale on YARN and on Kubernetes
ntegrate with CERN computing environment

Acknowledgments and Links

Matteo Migliorini, Marco Zanetti, Riccardo Castellotti, Michat Bien, Viktor
Khristenko, Maria Girone, CERN openlab, CERN Spark and Hadoop service

Authors of “Topology classification with deep learning to improve real-time
event selection at the LHC”, notably Thong Nguyen, Maurizio Pierini

Intel team for BigDL and Analytics Zoo: Jiao (Jennie) Wang, Sajan Govindan

ML Pipeline:
Data and code: https://github.com/cerndb/SparkDLTrigger

Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics
http://arxiv.org/abs/1909.10389

CERN Spark and Hadoop Service:

https://hadoop-user-quide.web.cern.ch/hadoop-user-quide/getstart/access.html
Spark on SWAN: https://swan.web.cern.ch/content/apache-spark

52

CERN ‘

https://github.com/cerndb/SparkDLTrigger
http://arxiv.org/abs/1909.10389
https://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/access.html
https://swan.web.cern.ch/content/apache-spark

