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Experimental Particle Physics -
the Journey

Particle Collisions Physics Discoveries
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Large Scale Computing

Device

Algorithms
to EWHE

reconstruct software
data
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Simulation



Analysis in CMS

Device

Algorithms
to - Analysis
reconstruct software
data

Simulation

Ce nt ral Hundreds of physicists analyze
the data with different goals

at the same time 4



Analysis: A multi-step Process

Recorded and simulated Events centrally ° M i n | m |Ze Ti me to I nSight

produced Analysis Object Data (MINIAOD)

o « Analysis is a conversation with data - Interactivity is
s @ ~4 x year key
Group ntuples - Many different physics topics concurrently

Skimming
&
Slimming

 Different slices of data are relevant for each analysis

: @ 1yweek  Under investigation

Group analysis ntuples

- . @ - Programmatically same analysis steps

e Skim mlng (dropping events in a disk-to-disk copy)
machine learing e Slim mlng (dropping branches in a disk-to-disk copy)
teohnique e Filteri NE (selectively reading events into memory)

<

every
couple of
days

Cut-N-Count Analysis
several times a day

<

Multi-Variate Analysis

several
times a

g  Pru ning (selectively reading branches into memory)

plots and tables




Big Data

- New toolkits and systems collectively called “Big Data” technologies have
emerged to support the analysis of PB and EB datasets in industry.

(, Cascalog 4. FlinkML 4. Impala

technologies to the HEP analysis cremy

. ° r (Htgh-Levgl MR Batch ML |( Batch Graph |( Batch SQL General management tools for data pipelines
1.Pg 1. H20 1. GraphLab 1. Hive
« Our goals in applying these INSIGHT IS I e VS I ewrwsmmn [ smpspommm
] 3. Hadoop Streaming 3. Spark MLiib 3. Spark GraphX 3. Drill 1. Docker 1. Luig:
4.t 2. Zookeeper 2. Airflow
3. YARN 3. Nagios

1. HDFS 1. Spark
challenge: {5 (2 e o2 )
A ransactions )
° Ingestion File Format | 3- Azure SAWS EME Aoiytics Web Framework | Data Visualization
. . 1. Kafka 1. Avro gacon L Uptime Critical
5 <AV 3 K i
* Reduce Time to Insight e L i P
3. RabbitMQ 3. Thrift Graph 3. Django 3. Leaflet
4. Fluentd 4. Parquet Stream Processin Geospatial 4. Highcharts
 Educat duate students and G| e
ucate our graduate stuaents an 5. AWS Kiness | 5. ORC Fies 1. stom Time Seres 2
2. Spark Streaming Cache

post docs to use industry-based technologies o (e rowme Ve

» Improves chances on the job market outside — J[ J
academia

* Increases the attractiveness of our field

* Be part of an even larger community




Bridging the Gap

Physics Analysis is typically done with the ROOT Framework which uses
physics data that are saved in ROOT format files. At CERN these files are
stored within the EOS Storage Service.

J ROOT sk

CrhErbED
EOS Storage Service
& -
v

jupyter

wice | T T T | =

Worldwide LHC Computing Grid

1. access data 2. read format 3. visualize



CMS Data Reduction and Analysis

Facility

Recorded and simulated Events centrally

produced Analysis Object Data (MINIAOD)

Ntupling

@ ~4 X year

Group ntuples

: @ ~1 x week

Skimming
&
Slimming

Group analysis ntuples

CMS Data
Reduction
Facility

-

. B
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£ex
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o

Cut-N-Count Analysis
several times a day

<

Multi-Variate Analysis

plots and tables

CERN openlab / Intel project

Demonstrate reduction
capabilities producing analysis
ntuples using Apache Spark

Demonstrator’s goal: reduce 1
PB input in 5 hours



Milestones and Achievements

- We solved two important data engineering challenges:

-
1. Read files in ROOT Format using Spark lﬁ;iJuwter@@
Ov accessed by
2. Access files stored in EOS directly from Hadoop/Spark e o T“\Z runs
HeRee o] [ (Sﬁgar K ‘ @ - '°”l :

access

- This enabled us to produce, scale up,and optimize  daafron
Physics Analysis Workloads with data input up to 1 PB. %ﬂ s

EOS
Storage
Service



Scal abi I ity Te Sts Test Workload Architecture and File-Task Mapping

IT Hadoop and Spark Service (analytix)
The data processing job of this project was wass calcutation, code} @@ @
developed in Scala by CMS members.

Driver
- Performs event selection (i.e. Data Reductio @

« Uses the filtered events to compute the
dimuon invariant mass

{Dimuon system Invariant

» On a single thread/core and one single SEeer
file as input, the workload reads one e
branch and calculates the dimuon
invariant mass in approximately 10 mins

for a 4GB file

Service



Scalability Tests: Technology

Apache Spark
 Hadoop YARN
« Kubernetes and Openstack

* Collaborated with Intel for Spark jobs optimizations: using Intel CoFluent Cluster Simulation Technology

« Services/Tools Used:

« EOS Public, CERN open data

« Hadoop-XRootD Connector (allows Spark to access the CERN EOS storage system)
» spark-root (Spark data source for ROOT format)

« sparkMeasure (spark instrumentation)

» Spark on Kubernetes Service

« |ssues that we tackled:

Network bottleneck at scale: “readAhead” buffer size configuration of the Hadoop-XRtooD connector

Running tests on a shared clusters and share infrastructure in IT datacenter



Hadoop and Spark Clusters at CERN

«  Clusters:
«  YARN/Hadoop
«  Spark on Kubernetes

- Hardware: Intel based servers, continuous refresh and capacity expansion

Accelerator logging | Hadoop - YARN - 30 nodes
(part of LHC (Cores - 800, Mem - 13 TB, Storage — 7.5 PB)
infrastructure)

General Purpose Hadoop - YARN, 65 nodes
(Cores — 1.3k, Mem — 20 TB, Storage — 12.5 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem — 2 TB
Storage: remote HDFS or EOS (for physics data)
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Scalability Tests — Optimization Results

Total Time Spent (Sum % (Compared
Over al Executors) to Execution

Time)

XRootD connector bytes read / sec

Total ~3000 - 3500 hours 1
Execution
Time | V’M i \ 'y
b= A\ \\ * .\' \lw
CPU ~1200 hours 40% W oY Py »;W « %
Time : W ANy ~ W ~ 4 : v
SRR L o\ w wwwm w AAARAAR WA
EOS Read ~1200 - 1800 hours, 40-50% (s Wm o A w'w Mﬁm
Time depending on 2130 0130
readAhead size
Garbage  ~200 hours 7-8 % - Read Throughput in GB/s
Collection ]
Time « Measure throughout during job
_ _ execution for 1 PB of input with, 100
. Key workload metrics and time spent, Spark executors, each using 8 logical
measured with Spark custom instrumentation COres.

for 1 PB of input with 804 logical cores, 8
logical cores per Spark executor



Scalability Tests - Results

+  Performance and Scalability of the
tests for different input size in
minutes, 800 logical cores,and 8
logical cores per Spark executor

Time for EOS Public

22 TB

44 TB

110 TB

220TB

1PB

7.3 mins
11.9 mins
27 mins (£2)
59 mins (5)

228 mins (£10)
(~3.8 hours)

Data reduction job, run time 223

200
150

100

Job run time (minutes)

Ul
o

27
73 11.9 -
0 — .

22TB 44 TB 110TB 220TB 1PB
Input data size

Can we reduce 1 PB in 5 hours
(original project milestone)? YES.

« We even dropped to 4 hours in our latest
tests



Machine Learning Use Case



Deep Learning Pipeline for Physics Data

R&D to improve the quality of filtering systems
« Develop a "“Deep Learning classifier’ to be used by the filtering system

«  Goal: Reduce false positives -> do not store nor process uninteresting events

“Topology classification with deep learning to improve real-time event selection at the
LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

~ CMS Experiment at LHC, CERN
CMS./ |pata recorded: Wed Jul & 19:26:24 2015 CEST
| \ Run/Event: 251244 / 83494441
o i i
L < i

3

39572626 / 358
1%
MET= 164.0 GeV
st Particle
ﬂ\;:g,‘ [} P p. =81.6 GeV — =g ——
A2 1 g  Classifier QCD
i I \ ; Electron
1~ p,=57.7
Jet p, =56.8 GeV
I Muon p,. = 53.8 GeV
f —
~

1
63%




Engineering Efforts to Enable Effective ML

From "Hidden Technical Debt in Machine Learning
Systems”, D. Sculley at al. (Google), paper at NIPS 2015

Machine o
Resource Monitoring
. Management
Configuration Data Collection Serving
E Infrastructure
Analysis Tools
Feature
' Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure 1s vast and complex.



Analytics Platform at CERN

—_
Integrating new “Big Data” jupyter
components with existing
Infrastructure: 1

« Software distribution APACHE
SE&ke

« Data platforms
l \ @ﬁ-.ﬂ Experiments storage
|
i@Fl%aFgmap HDFS

HEP software il 3
@ CERNBox Personal storage

CE/RW
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CERN

Analytics with SWAN

FILE EDIT VIEW INSERT CELL KERNEL HELP Trusted | Python 2 O ﬂ

B+ 3 A B 4 % MW B C Coe vE =
Do the heavylifting in spark and collect aggregated view to panda DF

In [11]: df_loadAvg pandas = spark.sql("SELECT submitter_host, \
avg(body.LoadAvg) as avg, \
hour{from_unixtime(timestamp / 1086, 'yyyy-MM-dd HH:mm:ss'})) as hr
FROM loadAvg \
WHERE submitter hostgroup = 'hadoop/itdb/datanode” \
AND dayofmonth(from_unixtime(timestamp / 18@@, 'yyyy-MM-dd HH:mm:ss'}) = 15 \
GROUP BY hour(from_unixtime(timestamp / 1088, 'yyyy-MM-dd HH:mm:ss')), submitter_host™)\

.toPandas ()
90 EXECUTORS 4180 CORES 1 COMPLETED
Job ID Job Name Status Stages Tasks Submission Time Duration

>3 uPendes % 4 minuts s ses

Visualize with seaborn

In [19]: # heatmap of service availability
plt.figure(figsize=(18, &))
ax = sns.heatmap(df_loadAvg_pandas.pivot(index="submitter_host’, columns="hr’, values="avg'), cmap="Blues")
ax.set_title("Heatmap of loadavg")

Qut[19]: Text(®.5,1,u'Heatmap of loadivg')

Heatmap of loadAvg

itrac1501 cern ch 2
itrac1502.cern.ch
itracl503.cem.ch 10
itrac1504.cern.ch
2 itrac1505.cern.ch _ &
i itrac1506.cern.ch
E itrac1507.cern.ch 6
a
B itrac1508 cem ch
itrac1509.cern.ch 4
itrac1510.cern.ch
itracl511.cern.ch 2

itracl512.cern.ch

01 2 3 45 6 7 8 %1011121314 151617 1819 20 21 22 23
hr

Visualizations

All the required tools,
software and data
available in a single
window!

19



Extending Spark to Read Physics Data

Physics data Is stored in EOS system, accessible with
xrootd protocol: extended HDFS APIs

Stored in ROOT format: developed a Spark Datasource

C++ Java

Currently: 300 PBs

Growing >50 PB/year [ o
" Client JNI ~  XRootD

=HON)

hu’m Connector
.
https://github.com/cerndb/hadoop-xrootd '| CERN
https://github.com/diana-hep/spark-root ( , = openlab



https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

Deep Learning Pipeline for Physics Data

Read physics Prepare input 1. Specify model Train the best
data and feature for Deep topology model
engineering Learning 2. Tune model

network topology on

small dataset

SpQ . Built with Apache Spark + Analytics Zoo + Python Notebooks

NS



The Dataset

. Software simulators generate events and
calculate the detector response

. Every event is a 801x19 matrix: for every
particle momentum, position, energy, charge
and particle type are given

features = [
'Energy', 'Px', 'Py', 'Pz', 'Pt', 'Eta', 'Phi’,
'wiaX', "wixY', 'wvixZ', 'ChPFIso', 'GammaPFIso', 'NeuPFIso’,
‘isChHad', 'isNeuHad', 'isGamma', 'isEle’', 'isMu', 'Charge’

]

NS



Data Ingestion

- Read input files (4.5 TB) from ROOT format
- Compute physics-motivated features
. Store to parguet format

54 M events
4.5TB

Events filtering |

+
HLF and LLF
dataframes

Physics data
storage

%% 750 GBs
E/RW 7 Parquet Stored on HDFS



Features Engineering

From the 19 features recorded in the
experiment:

14 more are calculated based on domain specific
knowledge: these are called High Level Features
(HLF)
Order the sequence of particles to be fed to a
seguence based classifier

The final sequence Is ordered using custom Python
code implementing physics



Feature Preparation

- All features need to be
Elements of the hfeatures column are list, hence we need to convert them into vectors.Dense
CO nve rte d to a fo r m at In [10]:  from pyspark.ml.linalg import Vectors, VectorUDT
from pyspark.sgl.functions import udf

vector_dense udf = udf(lambda r : Vectors.dense(r),VectorUDT())

CO n S u m ab I e by th e n e u ral data = data.withColumn('hfeatures_dense',vector_dense_udf('hfeatures’))

Now we can build the pipeline to scale HLF and encode the labels

In [11]:  from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoderEstimator

from pyspark.ml.feature import MinMaxScaler

## One-Hot-Encode

.
Py O n e H Ot E n COd I n Of encoder = OneHotEncoderEstimator(inputCols=["label"],
outputCols=[ "encoded label"],
dropLast=False)
.
Categorles ## Scale feature vector

scaler = MinMaxScaler(inputCol="hfeatures_ dense",
ocutputCol="HLF input")

° Sort the partiCIeS for the pipeline = Pipeline(stages=[encoder, scaler])

$time fitted pipeline = pipeline.fit(data)

Seq uence CIaSSIerr Wlth a UDF CPU times: user 294 ms, sys: 293 ms, total: 587 ms

- Executed in PySpark using
Spark SQL and ML

In [12]: data = fitted pipeline.transform(data)

CERN



Models Investigated

1. Fully connected feed-forward
DNN with High Level Features

2. DNN with a recursive layer
(based on GRUS)

Complexity
Performance
N S 3. Combination of (1) + (2)

CE/RW
\\_/




Hyper-Parameter Tuning— DNN

Once the network topology Is chosen, hyper-parameter
tuning is done with scikit-learn + Keras and parallelized
with Spark

o
\
Test - N m
ﬁ > # — | Best Model
dataset Model #2 [ ]
\ y

100k events




Analytics Zoo & BigDL

+ Analytics Zoo is a platform for unified analytics ANALYTICS

and Al on Apache Spark leveraging BigDL /
Tensorflow :@‘
«  For service developers: integration with the existing

distributed and scalable analytics infrastructure
DLy

(hardware, data access, data processing,
configuration and operations)

For users: Keras APIs to run user models,
Integration with Spark data structures and pipelines

- BigDL is a distributed deep learning framework
for Apache Spark

CE/RW
y

NS



Model Development — DNN

- Model is Instantiated with the Keras-
compatible API provided by Analytics Zoo

In [7]: # Create keras like zoo model.
# Only need to change package name from keras to zoo.pipeline.api.keras

from zoo.pipeline.api.keras.optimizers import Adam
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers.core import Dense, Activation

model = Sequential()

model.add(Dense(50, input shape=(14,), activation='relu'})
model.add (Dense(28, activation='relu'})
model.add(Dense(16, activation='relu'})

model.add (Dense(3, activation='softmax'))

creating: createZooKerasSequential
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense
creating: createZooKerasDense

CE/RW
\



In [B]:

Model Development — GRU+HLF

A more complex topology for the network

from
from
from
from
from
from

700.
700.

Z00

Z00.

700
00

pipeline.
pipeline.
.pipeline.
pipeline.
.pipeline.
.pipeline.

## GRU branch
gruBranch = Sequential() \
.add(Masking(©.8, input_shape=(861, 19))) \
.add (GRU(
output_dim=58,
return_sequences=True,
activation="tanh’

NN

api.
api.
api.
api.
api.
api.

keras.
keras.
keras.
keras.
keras.
keras.

models

layers.
layers.
layers.
layers.
engine.

.add(5elect(1, -1})

## HLF branch
hlfBranch = Sequential() \
.add(Dropout(8.8, input_shape=(14,)))

## Concatenate the branches
branches = Merge(layers=[gruBranch, hlfBranch], mode='concat')

## Create the model

model = Sequential() \
.add(branches) \
.add(BatchNormalization()) \
.add(Dense(3, activation="softmax'))

import Sequential

core import *

torch import Select

normalization import BatchNormalization
recurrent import GRU

topology import Merge

PFcandn PFcandz e

Masking }
GRU (50) } ( High-level features (14) ’

Concatenate (64)
Dense (25)



Distributed Training

Instantiate the estimator using Analytics Zoo / BigDL

# Create SparkML compatible estimator for deep learning training

from bigdl.optim.optimizer import EveryEpoch, Loss, TrainSummary, ValidationSummary
from zoo.pipeline.nnframes import *
from zoo.pipeline.api.keras.objectives import CategoricalCrossEntropy

estimator = NNEstimator(model, CategoricalCrossEntropy())\

.setOptimMethod(Adam({))

.setBatchSize(BDLbatch)

.setMaxEpoch{numEpochs)

.setFeaturesCol("HLF_input™) \

.setlabelCol(“encoded_label™)

.setValidation(trigger=EveryEpoch() , val df=testDF,

val_method=[Loss(CategoricalCrossEntropy())], batch_size=BDLbatch)

The actual training is distributed to Spark executors

Hormtime
trained model = estimator.fit(trainDF)

Storing the model for later use

modelDir = logDir + "/nnmodels/HLFClassifier'
trained model.save(modelDir)

Loss

1.0

0.8

0.6

0.4

100

HLF classifier loss

200 300
Iteration

—— Training loss
— Validation loss

400



Performance and Scalability of Analytics Zoo & BigDL

Analytics Zoo & BigDL scales very well in the
ranges tested

Speedup [times faster)
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Results

tt selector
.+ Trained models with 0
Analytics Zoo and BigDL .
% 0.6 ,//
- Met the expected g
= 7
accuracy results 5 04
0.2 ,f"/ —— HLF classifier (AUC) = 0.9821
’/' - Particle-sequence classifier (AUC) = 0.9906
,./ == |nclusive classifier (AUC) = 0.9929
0'00.;1 0.2 0.4 0.6 0.8

Background Contamination (FPR)
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TensorFlow on Kubernetes

- Additional results using TensorFlow 2.0 on Kubernetes

. CERN Cloud on Openstack
«  We developed integration for TF distributed on K8S: https://github.com/cerndb/tf-

spawner
3501 - . . .. )
. Distributed training with TF 2.0 o024
L
Ty
T
300 - A 0.22
9 .
E s P
o . __-m 0205
5 250 - ., - v
Q ‘-_._.,."
0 ‘u\ - 0 E-%
= e £
T 200 BTN 0 EE
: :
= _ . -0.14 ~
150 - "'x\
- 0.12
) Te-e
100 + T T T T 010
CE/RW 24 28 72 %
\ Number of CPU cores (Broadwell)
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Machine Learning with Spark and Keras

J:prter KeraS Big I ‘? T e
Data and .v TensorFlow
dels f - A » 0 » ;

modelsirom | =%" p, =W N, W K )

Researchers SﬁAdErK Spor Spor - = N
Input: —
Feature Distributed
labeled : , Hyp-er_parémeter . Output: particle
engineeri optimization model training
data and DL ng at Rand Grid selector model
models (Random/Gri

scale search)



Conclusions

- Spark and “Big Data’-based analysis platforms can improve
High Energy Physics data pipelines

« Industry-standard APIs

« Run natively on “data lakes™ and cloud

«  Profit from large communities in industry and open source
Two use cases developed

« CMS Data reduction at scale with Apache Spark

« Deep learning pipeline with Spark + BigDL and TensorFLow
Analytics platform at CERN

« Open for access to CERN community, notably users in Physics,
Beams and Accelerators, IT.

CE/RW
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