

Big Data Analysis and Machine Learning

at Scale with Oracle Cloud Infrastructure

JULY-AUGUST 2019

AUTHOR:

Michał Bień

Openlab Oracle collaboration

SUPERVISORS:

Riccardo Castellotti
Luca Canali

CERN openlab Report // 2019

2

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

ABSTRACT

This work has successfully deployed two different use cases of interest for High Energy Physics
using cloud resources:

 CMS Big data reduction: This use case consists in running a data reduction workloads for
physics data. The code and implementation has originally been developed by CERN openlab
in collaboration with CMS and Intel in 2017-2018. It aims at demonstrating the scalability of a
data reduction workflow, by processing ROOT files using Apache Spark

 Spark DL Trigger: This use case consists in the deployment of a full data preparation and
machine learning pipeline, starting from data ingestion (4.5 TB of ROOT data), to the training
of classifier using neural networks. This use case is implemented using Apache Spark and
the Keras API, following previous work in collaboration with CERN openlab.

Resources for this work have been deployed using Oracle Cloud Infrastructure (OCI). In particular
this project has allowed to complete:

 Setup of the project using Oracle Container Engine for Kubernetes and Oracle Cloud
resources

 Troubleshooting of the oci-hdfs-connector to run Apache Spark at scale on OCI Object
Storage

 Measurements of OCI Object Storage performance for the selected use cases

 Investigations and performance measurements of the resource utilisation on Oracle
Container Engine for Kubernetes (OKE), when running the TensorFlow/Keras neural network
model training at scale, using CPU resources, and when using GPU.

Notable results of this project:

 Produced several key improvements to the oci-hdfs-connector. The improvements are
necessary to run the latest Spark version (Spark 2.4.x) on Oracle Cloud. The connector is
distributed by Oracle with open source licensing, and the improvements will be fed back to
Oracle.

 Improved instrumentation infrastructure for measuring Spark workloads on cloud resources,
by streamlining the deployment of Spark performance dashboard on Kubernetes and
developing a Helm chart

 Produced a solution for direct measurement of I/O latency for Spark workloads reading from
OCI or S3 storage. The results are of general interest for Spark users, notably including the
Spark service at CERN

 Developed methods to parallelize TensorFlow/Keras on Kubernetes using TensorFlow 2.0
new tf.distribute features. These are of general interest for ML practitioners, notably including
the users of CERN cloud services.

CERN openlab Report // 2019

3

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

TABLE OF CONTENTS

INTRODUCTION 04

CMS BIG DATA REDUCTION 05

SPARK DL TRIGGER 09

INFRASTRUCTURE 14

CONCLUSIONS 17

BIBLIOGRAPHY 18

APPENDIX : MEASUREMENTS, METRICS AND INSTRUMENTATION 20

CERN openlab Report // 2019

4

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

1. INTRODUCTION

Techniques and tools for data analysis of large datasets are key to the success of many projects in High
Energy Physics and at CERN in general. HEP and CERN have developed many specialized toolsets [1] and
processing workflows. Looking at the computing challenges for the future of LHC experiments [2], the
interest is rising to investigate and adopt relevant tools and platforms from open source communities and
industry. Deployments on cloud resources are getting common in HEP applications [3]. Responding to the
CERN's need of scalable, elastic, on-demand data analysis, the project continues previous efforts [4], to
deliver simple, scalable data analysis solution using Oracle Cloud Infrastructure, measure its performance
and scalability, and compare it to CERN's in-house computing capabilities.

This work aims at collecting experience and insights on using cloud resources for use cases of interest for
physics data analysis. For this scope it was decided to deploy two recently developed big data workloads
and pipelines as a proof of concept, and measure their behaviour in different, public and private, cloud
infrastructure environments. These environments have complex configuration that was tuned for this work.
This work does not aim at benchmarking, but rather is an effort to provide meaningful insight that can be
further explored by the interested communities.

CERN openlab Report // 2019

5

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

2. CMS BIG DATA REDUCTION

CMS Big Data Reduction [5] runs an Apache Spark batch job written in Scala. It integrates with existing
CERN architecture: the workload ingests ROOT files produced by CMS experiment and published in the
CERN open data portal, and outputs histograms for di-muon events. The main challenge involved is to
ingest and process data fast and efficiently. In the following experiments, a 22TB dataset was used, with
4TB and 800GB subsets selected to draw scalability curve.

Figure 1: CMS Big Data Reduction workflow on CERN architecture

a. LIBRARIES COMPATIBILITY

Configuration of the library dependencies needed to run the job required significant work on the environment
setup. Two main problems addressed by this work and their proposed solutions were:

 In the oci-hdfs-connector version current at the time of this work, classpath resolution by JVM left
modules loaded manually (--jars and --packages) unprivileged. This in turn caused some jars to
miss dependencies, or not be loaded at all by Spark (starting from version 2.3.0). To overcome this,
it was decided to produce shaded (independent, conflict-free) JAR files for the extensions used by
the project. One of the shaded JARs - oci-hdfs-connector - was then submitted to the package
maintainers as a solution potentially interesting for other Spark users on OCI.

 In spark-root and root4j (libraries used to read ROOT files using Spark), the Hadoop configuration

would vanish or fail to propagate into the executor pods. A partial workaround - passing hardcoded
core-site.xml configuration to the workers - made it work in some cases, but not in all. After an
investigation, a bug was discovered in root4j library that prevented use of loaded Hadoop
configuration for all use cases involving .root files parsing. The bug was then examined and fixed.
The solution was included upstream, leading to the release of two patched versions of root4j
and spark-root (version 0.1.7 and 0.1.18 respectively).

CERN openlab Report // 2019

6

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

b. RUNNING SPARK JOBS USING THE KUBERNETES OPERATOR FOR APACHE SPARK

Running batch Spark jobs is often done using the spark-submit command included in Spark. However for
this work there was an additional requirement to use cloud resources and Kubernetes. For this reason, it
was decided to use spark-on-k8s-operator [6] to facilitate job deployment and control. The operator was
installed using helm, and provided the CRD (Custom Resource Definition) for Spark applications. The
resource file for deployment was then created and sent to Kubernetes cluster that ran the task using spark-
operator and provided configuration. For this work, Spark version 2.4.3, the latest production Spark version
at the time, was used. The operator was configured to use custom Docker images, based on spark-base-
image [7] and enriched with libraries and files crucial for running this workflow.

c. EXPERIMENTAL RESULTS

The first experiments with CMS Big Data analysis workflow on OCI used a small 6-node Kubernetes cluster.
Several configurations were tested using input data of increasing size: 800GB, 4TB and 22TB.

First runs were executed with one Spark task assigned to each physical CPU core. However, using OCI
instrumentation it was found that overall CPU utilisation on the VMs was low. To improve on this metric, the
adopted solution was to increase the number of parallel tasks per core. By experimentation, the optimum
value was found and set to 4 parallel task per executor/core.

The next step was to fine-tune the oci-hdfs-connector configuration. It was discovered that file downloads
were failing due to dynamic change of OCI Object Storage DNS record. For this with adjusted the Java TTL
value, following recommendations in the documentation [8].

Finally, it was discovered that the specific workload of the data reduction use cases uses random access
extensively. The object store that was carrying the big data is optimized for sequential file reading. Therefore,
the files processing performance was much lower than that of disk-based volumes used in CERN. To
overcome the problem at least partially, an experimental look ahead feature was implemented in oci-
hdfs-connector. The feature prevented connector from re-establishing connection to storage every time a
seek operation is performed on current streamed file. However, it didn't resolve the problem of backward
file seeks.

At that point, the fine-tuning stopped and measurement of the parallelization speedups and efficiency was
done for different cluster sizes.

Figure 2: Measurements of the CMS Bigdata data reduction workload scalability using OCI resources. (Left) The workload

scales linearly with the increase of dataset size. (Right) The workload scales linearly up to about 20 CPUs on OCI containers

(OCPU), when allocating more CPU resources, the onset of saturation was noticed, which is very evident at the regime of 80 to

120 CPU.

CERN openlab Report // 2019

7

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

The results of scalability benchmarks show linear scalability of the execution time as a function of dataset
size, as expected, since the workload is a simple data reduction without aggregations nor joins. Speedup
measurements as a function of the number of CPU cores, show almost linear scalability for low CPU
utilisation, up to about 20 CPUs. Deviations from linear scalability appear clearly in the speedup graph for
loads of about 20 concurrent CPUs and higher, finally saturating when more than 80 concurrent CPUs are
allocated. The workflow was previously measured [9] to scale up almost linearly up to thousands of cores,
therefore an effort to understand the bottleneck started.

Figure 3: Significant percentage of seek operations in overall processing time

The investigation have shown that file seek times do not stay constant with increasing number of nodes, but
instead they increase, making it inefficient to scale up above 6 nodes in the setup. The results point to a
possible I/O bottleneck. However, due to lack of access to additional metrics on OCI side, the research in
this area has been stopped and will be investigated in the future.

It was decided to compare results and times achieved in OCI environment to two cluster solutions available
at CERN: Kubernetes and YARN. Custom cluster configurations (reported in section 2b) were used to run
the jobs. The results achieved have clearly shown that the bottleneck is not present in the CERN
infrastructure.

Figure 4: Speedup comparison in OCI and CERN Cloud for the CMS Bigdata data reduction workload.

CERN openlab Report // 2019

8

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

While running the experiments on the CERN architecture, two additional observations were made:

 Usage of EOS storage leads to faster execution time compared to HDFS for this workload

 Kubernetes and YARN clusters scaled comparably. However, both of them suffered from minor
issues that needed to be addressed:

o The Kubernetes clusters suffered from issues related to how executor pods were deployed
by Spark into the cluster in batches. This was tuned for the workload using the Spark
parameter: spark.kubernetes.allocation.batch.size. Allocation batch size equal to the
number of desired executors was used in all cases: this resulted in all executors being
allocated at the application startup.

o The YARN cluster used had nodes of different CPU and RAM capacity, and overall was
“noisy” due to the presence of additional jobs and workloads. Due to these specifics, some
of tasks and executors ran at a slower pace, affecting the overall processing performance.
The problem was mitigated by enabling spark.speculation

Figure 5: YARN and Kubernetes performance comparison in CERN Cloud

CERN openlab Report // 2019

9

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

3. MACHINE LEARNING PIPELINE WITH SPARK ON PHYSICS DATA

The effective deployment at scale of complex machine learning (ML) techniques for HEP use cases poses
several technological challenges, most importantly on the actual implementation of dedicated end-to-end
data pipelines.

The use case addressed in this work consists in deploying a data pipeline for a machine learning task of
interest in high energy physics: building a particle classifier to improve event selection at the particle
detectors. The pipeline is built using tools from the "Big Data ecosystem", notably Apache Spark, BigDL with
Analytics Zoo, and TensorFlow. The original research work by Nguyen et al. [10], on which this pipeline is
based, has identified the potential benefits of using a learned particle classifier to improve the efficiency of
trigger systems for LHC experiments. Further work in CERN openlab [11] has shown how tools from the Big
Data ecosystem can be used to implement data preparation and deep learning at scale and has produced
a set of notebooks to implement the pipeline.

The pipeline consists of: data ingestion, feature preparation, model building, and training steps. During the
experiments conducted in this work, the whole pipeline was tested and run in cloud environment.

Figure 6: CMS Deep Learning Topology Classifier

a. DATA PREPARATION PIPELINE

The data preparation pipeline consists of data ingestion and feature preparation steps.

The data ingestion step acquires the original ROOT experimental data, selects the values and columns used
by the workflow, and generates Parquet files as an output and starting point for the next pipeline. The
process is CPU-intensive, although it also generates high traffic from and to data storage. This step was run
once as a proof that it can be run on OCI. The processing time of 12h 56m 41s was measured for 24 spark
executors running on total number of 12 OCPUs. During the process the data, originally 4.5TB of ROOT
files residing in OCI Object Storage, was reduced into 941GB of Parquet files, and saved to the same
storage.

The feature preparation step loads the data generated by the previous pipeline and prepares the dataset for
deep learning classifier training. Two key processes are performed: data undersampling and shuffling into
train and test sets. As an effect of the undersampling operation, which decreases representation of event
classes to prevent class imbalance, the dataset shrunk to 317GB. Data shuffling process relies highly on
RAM memory capacity and generates very intense traffic inside the cluster, as it needs to shuffle the data
between nodes, while the whole dataset is stored in cluster memory. The shuffle implementation was also
affected by bug in Spark version 2.4.3, which lead to memory overflow in driver node (see Section 3b). The
whole process took 1h 26m 17s on test set (20% of data) and respectively longer on training set.

CERN openlab Report // 2019

10

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

b. INTERACTIVE PYSPARK JOBS ON KUBERNETES

The code implementing the workflows was made available in Python with Jupyter Notebooks. Two Docker
images were created [7] to run this code on the available cloud resources and Kubernetes:

 spark-executor-image: based on spark-base image, with added Python, PySpark support, and
needed integrations (AWS, OCI…)

 spark-driver-image: based on spark-executor-image, with added Jupyter notebook installation,
customized with an entry point able to serve a Jupyter notebook server on start.

The Docker image was run manually on a host computer first, and then connected to a remote Kubernetes
cluster using the local Jupyter server. To facilitate running remote interactive jobs, a helm chart was created.
This method allowed running Spark DL Trigger charts in a scalable, safe, and reproducible environment.

The feature preparation step made use of data sampling and triggered Spark shuffle operations. However,
due to a bug in Spark 2.4.3 mentioned above, the shuffle operations were causing significant increase of
RAM memory use in driver node, effectively causing memory overflow in testing environment. To overcome
the problem, feature preparation step was run on Spark-3.0.0-SNAPSHOT (August 2019). Unfortunately,
the amount of cluster memory was too small to fit the data needed by shuffle operation. The problem had
two possible solution: scaling cluster up, or increasing the number of shuffle partitions. The latter, allows to
decrease the size of data processed at a given time and it was our choice. We used it by increasing the
spark.sql.shuffle.partitions parameter. With this configuration, the feature preparation process completed
successfully.

c. DISTRIBUTED TRAINING BIG DL AND ANALYTICS

The classification model architecture tested in this project – an “Inclusive Classifier” - consists of two
dataflow branches. The first one is a recurrent neural network featuring GRU units that trains on the original
input data. The second branch is an input layer that features 14 handcrafted high level features, giving the
model additional insight about the data. The two branches are combined and fed to the dense layers which
return three possible classes with probabilities calculated using the softmax function.

This project makes use of BigDL combined with Analytics Zoo, and handles the model architecture using
only the Keras API. Thanks to the compatibility layer, Keras API objects and directives are interpreted and
run as BigDL workflow, without the need of any previous user expertise in BigDL.

Figure 7: Comparison of the classifier model written with Analytics Zoo Keras API (on the left) and TensorFlow 2.0.0-rc0 (on the

right). The code is nearly the same, while the underlying interpretation and implementation in machine learning framework is

completely different

CERN openlab Report // 2019

11

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

d. TENSORFLOW DISTRIBUTED USING CPU RESOURCES

BigDL training pipeline approach, which is very straightforward to run on Spark, is not the only possible way
to run distributed training on big data. For comparison, a TensorFlow experimental API – tf.distribute with
Multi-Worker Mirrored Strategy was tested.

Multi-worker strategy is a new TensorFlow runtime strategy, introduced in TensorFlow 1.14. It allows running
training in a distributed cluster of machines with minimal changes to the single-node Keras models. It
requires additional configuration and in particular care to run the same script on all the participating nodes.
This idea, while very powerful, leads to a need of manual configuration and execution of jobs on worker
machines. To automate the deployment, and execute training in scalable, yet controlled, distributed cluster
environment, an automatic configuration and deployment script for Kubernetes was created [12].

Figure 8: Python code applying tf.distribute to existing code

Another issue was related to the training data format used by TensorFlow. Currently, TFData API, used as
a data fetching engine, is only capable of reading a limited number of data formats and in particular its
recommended file format is tfrecord. For this reason, the input files of for the training and test dataset have
been converted from Apache Parquet to TFRecord. This was done using Spark and a data source capable
of saving in tfrecord format:spark-tensorflow-connector,made available by the TensorFlow project..

df.coalesce(numPartitions)

 .selectExpr("toArray(HLF_input) as HLF_input",

 flatten(GRU_input) as GRU_input",

 "toArray(encoded_label) as encoded_label")

 .write.format("tfrecords")

 .save(outputPath+"testUndersampled.tfrecord")

Figure 9: Scala code transforming parquet files into tfrecord

e. TENSORFLOW ON GPU

After running both BigDL and TensorFlow on CPU, it seemed interesting to compare this two results to the
most standard TensorFlow training case – on one node, with one GPU. For that, the GPU-enabled node on
OCI was used (VM.GPU2.1), which was deployed with NVIDIA Tesla P100 GPU. The instance was
configured with the corresponding NVIDIA drivers, CUDA and cuDNN to ensure training optimization.

f. EXPERIMENTAL RESULTS

The results of the tests with Spark and BigDL and with TensorFlow distributed show very good parallelization
efficiency. Near linear scalability was found in both cases up to about 200 cores when running distributed
training of the neural network, for the case of the “Inclusive classifier”.

CERN openlab Report // 2019

12

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

Figure 10: Speedup comparison for BigDL and TensorFlow Distributed (CPU-only)

TensorFlow distributed tests were run using resources from an Oracle OKE cluster. The testing environment
used TensorFlow 2.0.0-rc0 and variable number of nodes (12 to 24). The number of TensorFlow threads
(Kubernetes pods) per node was experimentally tuned and set to 2. The batch size was set to 128 both for
TensorFlow and BigDL tests.

solution\nodes 12 15 18 21 24

BigDL 14.25 16.33 18.92 22.60 27.78

tf.distribute 12.30 14.08 16.25 19.35 22.95
Figure 11: Comparison of distributed training solutions - processing time in minutes, time to first epoch

Figure 12: Comparison of BigDL and Distributed TensorFlow runs – times and losses

It’s clearly visible, that MultiWorker TensorFlow and BigDL training times are comparable (slightly in favour
of BigDL, as it downloads all the data before training so first-epoch training is a worst-case measure).
However, during the experiments, significant difference in training performance was encountered – the
TensorFlow loss function value was decreasing much faster, and was plateauing slower. The two
frameworks use very different backend. The results of these tests have been fed back to the BigDL
developer team for further understanding of the root causes.

CERN openlab Report // 2019

13

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

Figure 13: Time and Loss performance metrics measured for distributed training with TensorFlow on Kubernetes (CPU

clusters), plotted as a function of the number of cores used for the test.

The last test that was performed was a single GPU training with vanilla TensorFlow on one node. It was
prepared to compare and get an insight about the scale of difference between performance of ML training
on GPU and distributed training on CPU. The tests were run on a single VM instance running in OCI (section
3d).

During the test on TensorFlow 1.14, the GPU initially appeared to have very bad performance while
performing GRU training. After analysis, it became clear that the performance was lower than expected and
that the GPU was underutilized. The issue was solved after updating to TensorFlow-2.0.0-rc0. TensorFlow
2.0 release notes confirm that the implementation of GRU models for NVIDIA GPUs and cuDNN library has
been improved by an order of magnitude in TensorFlow release 2.0 compared to TensorFlow 1.x. The
training speed increased more than 10 times after the version was upgraded.

At that moment, another test was run: the same TensorFlow training on GPU was ran in CERN using local
NVIDIA GPUs with an effort to reproduce similar run environment and compare public cloud GPU training
performance to utilisation of local resources. The results were very different: single GPU training took about
50 min/epoch on cloud GPU ingesting data from OCI Object Storage, while single machine with dataset
available locally was able to finish the same calculations in 30 min/epoch. This result shows how distinct
environment, storage and parameters setup can affect the training performance, even when the same
training accelerator is in use.

In addition to comparing time for the GPU-based training and distributed CPU training on TensorFlow, the
loss function decrease velocity was also analysed, as a proxy for model convergence speed. It was found
that single GPU training converges faster than distributed CPU, which may make models trained on GPU
better, even if smaller number of training epochs was ran.

CERN openlab Report // 2019

14

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

Figure 14:Comparison of training time on distributed CPUs and GPU

4. INFRASTRUCTURE

a. SOFTWARE

The software used for experiment runs can be briefly introduced as follows:

 Docker - container solution that provides runtime environment isolation and reproducibility

 Kubernetes - container orchestrator, configured as cluster of the machines, allows automatic node

assignment and scheduling

 Terraform - Infrastructure as a Code engine that allows user to seamlessly spawn cloud
infrastructure following the provided scripts describing expected final state.

 Apache Spark (2.4.3, 3.0.0-SNAPSHOT) - in-memory analytics engine for large-scale data
processing

 Apache Hadoop - framework for distributed processing of large datasets. Integrates with Spark,
and serves as its data ingestion engine in many situations

 Apache Hadoop YARN - job scheduler and cluster resource manager. In the workflows considered

as alternative to Kubernetes

 hadoop-aws - connector for Hadoop framework, allowing ingestion of data from object storages
that offer APIs compatible with those of AWS S3.

 oci-hdfs-connector [8] - official connector for Hadoop framework, allowing ingestion of data using
native OCI Object Storage APIs.

 root4j and spark-root - libraries that enable Apache Spark to parse ROOT file format, that is used

by CERN experiments.

 xrootd and hadoop-xrootd - libraries that allow high performance, direct access to CERN
experiments data written in ROOT file format.

 Intel BigDL (0.8.0) [13] - distributed deep learning framework optimized to run on Intel CPUs in the
cloud. It integrates with Spark using Intel Analytics Zoo framework.

 TensorFlow (2.0.0rc1) - one of the most popular machine learning libraries, recently updated with
distributed training feature

CERN openlab Report // 2019

15

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

i. SPARK ON KUBERNETES

Spark on Kubernetes is a relatively new feature, which is showing increasing adoption and maturity in recent
Spark versions. Introduced in Spark version 2.3 and greatly extended in 2.4, Kubernetes support joins
YARN, Mesos and standalone cluster, as a cluster manager for Spark, and it is the main solution for cloud
native environments. Due to its wide adoption in many areas of cloud industry, Kubernetes support for Spark
is expected to further gain attention and improved maturity in the upcoming next version of Spark (Spark
3.0).

Spark makes use of the Kubernetes API to connect to the service, and create the requested number of
worker pods. User is expected to provide a Docker image for worker deployment. Jobs can be run in cluster
or client mode: client mode runs the Spark driver on the same machine that started Spark job. Cluster mode
runs driver as a separate Kubernetes pod. For this reason, the decision was made to use client mode for
interactive jobs, and cluster mode for the batch ones. Spark 2.4 provides several configurable setup flags,
the following table lists the main ones were used in tests:

Parameter name Default value (if not specified otherwise)

spark.kubernetes.namespace (Kubernetes namespace name)

spark.kubernetes.allocation.batch.size (equal to spark.executor.instances)

spark.kubernetes.container.image (one of custom Docker images)

spark.kubernetes.container.image.pullPolicy Always

spark.kubernetes.pyspark.pythonVersion 3

spark.master (k8s://http://127.0.0.1:8001 with kubectl proxy running)

b. HARDWARE – CLOUD RESOURCES

i. OCI CONTAINER ENGINE FOR KUBERNETES

The cloud solution used to create the cluster environment was Oracle OCI Container Engine for Kubernetes.
The solution allows users to spawn Kubernetes cluster, with managed master nodes, which can then be
populated with worker nodes organized in specific topologies. To deploy the cluster in an organized manner,
a terraform script - oke-terraform [14] - created by Oracle, was customized and used.

Oracle Cloud Infrastructure allows its users to create flexible topologies and setups of nodes, which then
can be scaled up and down easily. All this setup resides in specific tenancy and compartment. A tenancy is
an isolated partition of Oracle Cloud that is specifically dedicated to an organization. All the OCI endpoints
are identified by both their name and the tenancy id. The tenancies are fully independent - resources names
used inside a given tenancy don't need to be globally unique. Tenancy can contain multiple compartments.
Each compartment is a setup of OCI services, dedicated logically to specific group of services, and provided
with distinct service limits, user privileges and services running. Compartments are organized in a tree
schema. Each cluster and instance is therefore identified by its ID, tenancy, and compartment. The default
oke-terraform setup allows user to spawn a Kubernetes cluster along with the desired amount of node pools.
A node pool is a logical set of running instances that are meant to share the same state and configuration
setup.

The OCI Frankfurt-1 region that was used for the deployment consists of 3 availability domains (AD). Each
AD is a logically independent part of the Oracle datacentre. For this reason, the default setup of instances
used by oke-terraform consists of multiples of 3, where each 3 machines have different AD, for better
redundancy and performance concerns. Instances in the same AD are organized in subnets, one for each
AD. For this project, it was decided to create OKE cluster with 1 node pool consisting of 3 subnets, variable
number of instances (1 to 8) each. For the deployment, VM.Standard2.8 machine flavour was used,
providing 8 physical (16 logical) Intel Xeon cores and 120GB of RAM memory [15].

CERN openlab Report // 2019

16

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

In this work, the Spark was run over Kubernetes on OKE, using Spark’s cluster mode for batch jobs, and
client mode for interactive ones. All jobs were run with a 100GB memory threshold specified, with both
spark.dynamicAllocation and spark.speculation features disabled.

ii. INFRASTRUCTURE AT CERN

CERN datacenter provides user with infrastructure, both virtualized and bare-metal, that can be organized
in many different types of clusters. In this case, two solutions, YARN and Kubernetes, were compared and
tested. The clusters deployed at CERN reside in different parts of datacentre - it was previously discovered
[4] that deploying large scale workflows reading EOS storage on Kubernetes might cause network
bandwidth bottleneck at around 20Gb/s, while connection to YARN cluster profits of network configurations
with higher bandwidth to EOS storage. For these runs, cluster sizes were experimentally adjusted not to hit
the bottleneck threshold on Kubernetes, while still showing full scalability potential.

 YARN cluster at CERN consists of 47 virtual machines serving as worker nodes, manually
configured and collaborating together to provide boost on analytics workflows. The cluster offers
total of 14.23TB of RAM memory and 1642 logical CPU cores

 Spark@K8s - a vanilla Kubernetes cluster, deployed with Openstack Magnum architecture
provisioner that serve computing power for Spark on Kubernetes workflows. The part of cluster in
use for this experiment offered a total of 256GB of RAM memory and 128 logical cores.

c. DOCKER IMAGES FOR KUBERNETES

As Kubernetes is an just an orchestrator for Docker containers, all of the code and configuration needed for
running the user application, has to be built-in or otherwise accessible from within the container. This was a
major problem when porting the existing workflows that strongly relayed on statically deployed, feature-
packed, Hadoop YARN cluster nodes. It was difficult to create lightweight, yet powerful Docker image that
supports all the features and libraries needed by the workflow. The official Spark image, based on Alpine,
which uses musl-libc, a libc implementation, was tested, but this was not compatible with BigDL, a key library
for the distributed learning part of the pipeline. Containers based on Debian were also tested, but in this
case Debian had no repository support for CERN specific software like xrootd. Finally, the workflow was
deployed using CERN CentOS 7 image as base Spark executor image [7]. This image was later used as a
base for all the other custom Spark container images.

CERN openlab Report // 2019

17

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

5. CONCLUSIONS

This project’s aim was to deploy and run two different data science pipelines in the cloud. The experimental
results lead to conclusion that it was possible to run successfully on cloud resources all the tested
workflows. The outcomes of the scalability tests provided additional insights:

 A bottleneck was encountered for the CMS Big Data reduction workload running on OCI and reading
data from the OCI Object Store. The bottleneck appears when running at scale greater than 20
concurrently utilized CPUs. This appears to be related to storage access and needs to be further
investigated with OCI engineers.

 It was possible to compare the performance of distributed training with Spark and BigDL, Tensorflow
2.0 with tf.distribute and Tensorflow 2.0 on GPU. The results are useful for future work in this area
and also provide material to further discuss with the development team of BigDL.

Another key outcome of the project, besides the workload measurements, is the development of a set of
deliverables, including bug fixes, pull requests, scripts and markdown files, that demonstrate how to run
Spark and data analysis workflows on OCI with Kubernetes. All the software developed has been
uploaded to the relevant repositories and linked as references in this report. This opens the way for future
users of the platform to deploy their Spark applications on OCI.

The results of the project lead to possible continuation in several ways. After receiving the feedback from
Intel and Oracle on the identified performance issues, both tests of Spark DL Trigger and CMS Big Data
on OCI Object Storage can be repeated with improved versions of the software. The GPU training is still
a wide area for further investigation, especially scalability of TensorFlow MultiWorkerMirroredStrategy
on the cluster of multiple GPU-enabled instances in the cloud. The lessons learned on OCI can be
directly used for deployments on CERN private cloud.

CERN openlab Report // 2019

18

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

6. BIBLIOGRAPHY

[1] R. Brun and F. Rademakers, “ROOT - An Object Oriented Data Analysis Framework,” in Proceedings

AIHENP'96 Workshop, Lausanne, 1996.

[2] I. Bird, “Computing for the Large Hadron Collider,” Annual Review of Nuclear and Particle Science,

Vol. 61, pp. 99-118, November 2011.

[3] CERN, “Cloud Infrastructure,” [Online]. Available: https://cern.service-now.com/service-

portal/function.do?name=cloud-infrastructure. [Accessed 27 August 2019].

[4] V. Dimakopoulos, “Apache Spark on Hadoop YARN & Kubernetes for Scalable Physics Analysis,”

CERN openlab, 2018.

[5] O. Gutsche, L. Canali, I. Cremer, M. Cremonesi, P. Elmer, I. Fisk, M. Girone, B. Jayatilaka, J.

Kowalkowski, V. Khristenko, E. Motesnitsalis, J. Pivarski, S. Sehrish, K. Surdy and A. Svyatkovskiy,

“CMS Analysis and Data Reduction with Apache Spark,” CoRR, vol. abs/1711.00375, 2017.

[6] Google, “spark-on-kubernetes-operator,” Github, [Online]. Available:

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator. [Accessed 29 August 2019].

[7] M. Bien, “public work done in 2019 with Openlab,” 20 August 2019. [Online]. Available:

https://gitlab.cern.ch/db/spark-service/openlab2019/. [Accessed 3 October 2019].

[8] Oracle, “HDFS Connector for Object Storage,” Oracle Cloud, [Online]. Available:

https://docs.cloud.oracle.com/iaas/Content/API/SDKDocs/hdfsconnector.htm. [Accessed 27 August

2019].

[9] M. Cremonesi, C. Bellini, B. Bian, L. Canali, V. Dimakopoulos, P. Elmer, I. Fisk, M. Girone, O.

Gutsche, S.-Y. How, B. Jayatilaka, V. Khristenko, A. Luiselli, A. Melo, E. Evangelos, D. Olivito, J.

Pazzini, J. Pivarski, A. Svyatkovskiy and M. Zanetti, “Using Big Data Technologies for HEP

Analysis,” CoRR, 22 January 2019.

[10] T. Q. Nguyen, D. Weitekamp, D. Anderson, R. Castello, O. Cerri, M. Pierini, M. Spiropulu and J.-R.

Vlimant, “Topology classification with deep learning to improve real-time event selection at the

LHC,” 2018.

[11] M. Migliorini, R. Castellotti, L. Canali and M. Zanetti, “Machine Learning Pipelines with Modern Big

Data Tools for High Energy Physics,” arXiv, 23 September 2019.

CERN openlab Report // 2019

19

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

[12] CernDB, “tf-spawner,” 2 September 2019. [Online]. Available: https://github.com/cerndb/tf-spawner.

[Accessed 20 September 2019].

[13] J. Dai, Y. Wang, X. Qiu, Y. Zhang, Y. Wang, X. Jia, C. Zhang, Y. Wan, Z. Li, J. Wang, S. Huang, Z.

Wu, Y. Wang, Y. Yang, B. She, D. Shi, Q. Lu, K. Huang and G. Song, “BigDL: A Distributed Deep

Learning Framework for Big Data,” CoRR, vol. abs/1804.05839, 2018.

[14] Oracle, “Terraform for Oracle Container Engine,” [Online]. Available: https://github.com/oracle-

terraform-modules/terraform-oci-oke. [Accessed 27 August 2019].

[15] Oracle, “Cloud Computing VM Instances,” [Online]. Available:

https://cloud.oracle.com/compute/virtual-machine/features. [Accessed 27 August 2019].

[16] L. Canali, “A Performance Dashboard for Apache Spark,” 12 February 2019. [Online]. Available:

http://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-apache-spark.

[Accessed 20 September 2019].

[17] L. Canali, “[SPARK-28091[CORE] Extend Spark metrics system with user-defined metrics using

executor plugins,” 18 June 2019. [Online]. Available: https://github.com/apache/spark/pull/24901.

[Accessed 20 September 2019].

[18] CernDB, “Spark Executor Plugins,” 9 September 2019. [Online]. Available:

https://github.com/cerndb/SparkExecutorPlugins2.4. [Accessed 20 September 2019].

CERN openlab Report // 2019

20

 Big Data analysis and Machine Learning at Scale with Oracle Cloud Infrastructure

7. APPENDIX: MEASUREMENTS, METRICS AND INSTRUMENTATION

a. SPARK DASHBOARD INTEGRATION

In order to provide metrics for monitoring Spark jobs running in the cluster, it was decided to use Grafana
with InfluxDB backend (solution developed by Spark and Hadoop service at CERN [16]) to ingest data from
spark and express them on the dashboard. To facilitate in-cluster deployment, a helm chart was developed
and deployed, containing both Grafana and its functional dependencies. Then, Spark configuration was
adjusted to follow the dashboard configuration.

Parameter Value

spark.metrics.conf.*.sink.graphite.class org.apache.spark.metrics.sink.GraphiteSink

spark.metrics.conf.*.sink.graphite.host (spark-dashboard hostname)

spark.metrics.conf.*.sink.graphite.port (spark-dashboard graphite port)

spark.metrics.conf.*.sink.graphite.period 10

spark.metrics.conf.*.sink.graphite.unit seconds

spark.metrics.conf.*.sink.graphite.prefix (prefix)

spark.metrics.conf.*.source.jvm.class org.apache.spark.metrics.source.JvmSource

spark.app.status.metrics.enabled true
Table 1: Spark instrumentation parameters

b. OCI INSTRUMENTATION

To allow seamless and uniform integration with OCI metrics, a patch was backported from Spark 3.0 PR
proposal [17] to the Spark 2.4.3, allowing plugins inclusion in spark metrics system. Furthermore, oci-
hdfs-connector was modified to provide metrics and the plugin was developed [18], leading to
connection of all the parts of the Spark OCI instrumentation. The modified version of Spark was always run
with additional configuration option to configure new plugin and initialize custom Spark metrics:
spark.executor.metrics.plugins=ch.cern.ExecutorMetricsPluginScala.OCICustomMetrics

c. MEASUREMENT CRITERIA AND SPEEDUP

The execution time was used as a metric to measure performance of most experiments. All times were
calculated in minutes. The software-provided metrics were used wherever possible, otherwise Linux time
application was used to register application execution wall time.

Considering 𝑡(𝑥𝑛) is defined as an execution time of n-th experiment, counting from zero, sorted by
ascending experimental cluster size, the speedups on “Parallelization efficiency” graphs were calculated
using the formula:

𝑆(𝑥𝑖) =
𝑡(𝑥𝑖)

𝑡(𝑥0)

Meanwhile, “Normalized parallelization efficiency” graph has its speedup defined as follows:

𝑁𝑆(𝑥𝑖) =
(𝑆(𝑥𝑖) − 1) ∗ 𝑡(𝑠0)

𝑡(𝑥0)
+ 1

Where s0 is the maximum value of x0 of all experiment sets presented on the normalized graph.

