Investigating Apache Spark for Physics Analysis

Luca Canali CERN IT, Spark and Analytics Service May 2022

Speaker

- Short intro: Luca Canali
 - Data engineer at CERN IT
 - Working with Spark and Hadoop/Big Data services in IT-DB/IT-DA since its start in 2016.
 - Previously participated in the CMS Big Data Project
 <u>https://cms-big-data.github.io/</u>
 - Contributed (minor features/patches) to Apache Spark
 - Oracle DBA at CERN, since 2005. Working with IT and ATLAS DBA teams.

Motivations and Scope

- Context: Spark service at CERN
- Recent work on Spark Arrow UDF + work on implementing example analyses using PySpark on Jupyter notebooks
 - Blog: Can High Energy Physics Analysis Profit from Apache Spark APIs?
 https://db-blog.web.cern.ch/node/186
- I will mix an intro to Spark with notebooks examples
- Final thoughts on what I believe works OK with this approach and what needs improvements
- Not a goal: compete with state-of-the art software for analysis

Apache Spark Ecosystem

CÉRN

Apache Spark Adoption

- Who is using Spark, how, and why?
- Databricks

- They sell a cloud-based analytics platform, centered around Spark
 - Development in the Spark ecosystem (Data Lakehouse, MLFlow)
 - They also have custom Spark improvements
- Top contributors and drivers of the open-source development
- Cloud vendors
 - All offer user-facing "Big Data" platforms, typically including Spark
- Many tech giants use it internally: Facebook, Apple, MS, Baidu, Netflix, etc
 - Some contribute back to Spark development (Apache Spark PMCs)

Spark @ CERN

- Key component of the Hadoop platforms.
 - IT monitoring, IT security
 - Experiments computing data
 - Physics: RDataFrame, CMS Spark, CMS Muon POG
- We also provide Spark on Kubernetes clusters
- User-access
 - Notebooks, often via SWAN. Some use of Spark on R
 - Batch jobs: Python, Scala, Java
- NXCals platform
 - Critical logging system for the accelerator complex
 - Platform based on Hadoop, API based on Spark

Demo 1

- Can Apache Spark run basic physics analysis?
- Let's start with a "Hello World!" example
- Dimuon mass spectrum analysis at

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

Main Data Abstraction: Spark DataFrames

CERN

- DataFrame is a table-like abstraction
 similar to Pandas DF
- Handles data with a schema
- DFs are partitioned and immutable
 - enables parallel execution
 - and fault tolerance at scale

8

Data Formats: ROOT, Parquet

- Data format is key for performance
 - ROOT can be ingested by Spark using Laurelin by A. Melo
 - Uproot and Laurelin can also be used to convert from ROOT to Parquet
- Spark is optimized for Apache Parquet (and ORC too)
 - Columnar format, with encoding, compression, schema
 - Spark has a custom vectorized Parquet reader, for performance
 - Filter pushdown
 - Filters can be resolved at the Parquet level
 - Statistics of min/max and other metadata
 - Recently also bloom filters

DataFrame API Basics

- Selections and projection are easily scalable
- Filter operations naturally fit with the DataFrame API

```
# Apply filters to the input data
# - select only events with 2 muons
# - select only events where the 2 muons have opposite charge
df_muons = df_muons.filter("nMuon == 2").filter("Muon_charge[0] != Muon_charge[1]")
```

• Expressions and formulas

```
df_with_dimuonmass = df_muons.selectExpr("""
    sqrt(2 * Muon_pt[0] * Muon_pt[1] *
        ( cosh(Muon_eta[0] - Muon_eta[1]) - cos(Muon_phi[0] - Muon_phi[1]) )
        ) as Dimuon_mass""")
```


Histograms with the DataFrame API

- Operation with data aggregation/shuffle
- Implemented using the *width_bucket* function
 - Works on many SQL engines

```
histogram_data = (
    df_with_dimuonmass
        .selectExpr(f"width_bucket(Dimuon_mass, {min_val}, {max_val}, {num_bins}) as bucket")
        .groupBy("bucket")
        .count()
        .orderBy("bucket")
)
```

convert bucket number to the corresponding dimoun mass value histogram_data = histogram_data.selectExpr(f"round({min_val} + (bucket - 1/2) * {step},2) as value", "count as N_events")

Actions and Transformations

- Two types of operations on DataFrames:
 - **Transformations**: transform a DF in another one:
 - filter, select, ...
 - Actions: trigger computation and return value
 - collect, toPandas, ...
- Lazy evaluation and immutability:
 - Spark parses and optimizes only when an action is requested
 - You can express DataFrame transformations using many steps, for readability
 - Fault tolerance
 - the transformations can be replayed on the original DF (or on some of its partitions)

Spark Actions and DAG

- Invoking an action creates a job which is then divided in stages and executed by tasks.
 - Spark defines the computation using graphs (DAG).
 - Operations are grouped in stages.
 - Uses map-shuffle-reduce operations.

Execution DAG From the WebUI

Spark Tasks and Executors

- Tasks are the units of parallelization and are run concurrently on the available executors.
- Executors are the scalable engines that run tasks
 - From local mode (laptop) to 1000s of executors
 - Executors are JVM instances
 - They have associated CPU cores, memory
 - Executors as containers
 - execution engines / clusters: K8S, YARN, Stand alone Spark cluster

How Spark Runs Jobs at Scale

Apache Spark Clusters at CERN

- Spark running on clusters:
 - YARN/Hadoop -> established
 - Spark on Kubernetes -> growing adoption

Accelerator logging (part of LHC infrastructure)	Hadoop - YARN - 30 nodes (Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)
General Purpose	Hadoop - YARN, 47 nodes (Cores – 2.0k, Mem – 25 TB, Storage – 16 PB)
Cloud containers	Kubernetes on Openstack VMs, Cores - 270, Mem – 2 TB Storage: remote HDFS or custom storage (CERN EOS, for physics data, S3 on Ceph also available). Note: GPU resources available.

SWAN Integration with Apache Spark

- SWAN service: <u>https://swan.web.cern.ch/swan/</u>
 - Notebooks for web-based analysis
- Integrated with CERN Spark Clusters
 - Reduces configuration complexity for users
- CERN software environment
 - Software from CVMFS
- Graphical Jupyter extensions developed
 - Spark Connector
 - Spark Monitor
- Access to Spark Clusters
 - NXCals: Dedicated cluster for accelerator logging
 - Analytix: General purpose YARN cluster
 - Cloud Containers: General purpose Kubernetes cluster
 - Storage access: HDFS, EOS, S3

Demo 2

• Dimuon mass spectrum analysis on a cluster:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

Spark can Handle Complex Schemas

• Example of complex schema for HEP

```
schema = "event LONG, HLT struct<flag1:boolean, flag2:boolean>, muons
ARRAY<STRUCT<pt:FLOAT, eta:FLOAT, phi:FLOAT, mass:FLOAT>>"
```

df.printSchema()

```
|-- event: long (nullable = true)
|-- HLT: struct (nullable = true)
| |-- flag1: boolean (nullable = true)
| -- flag2: boolean (nullable = true)
|-- muons: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- pt: float (nullable = true)
| | |-- eta: float (nullable = true)
| | |-- phi: float (nullable = true)
| | |-- mass: float (nullable = true)
```


Handling Arrays

- Nested data is hard to handle
 - Does not fit naturally to DataFrame and SQL operations
- Available solutions in Spark
 - Array functions
 - Several available, example: array_min, array_sort, array_zip, ...
 - "Explode" function
 - Transforms array values into DataFrame rows
 - Higher order functions
 - Process map/filter/aggregate on arrays elements (see next slide)
 - **UDF**: User-defined functions
 - General solution.
 - Spark UDF can be in Python or Scala

Spark Higher Order Functions

 Push filters, maps and reduce into arrays with higher order functions

Array processing with Spark higher order functions in SQL
Filter values > 38 from an array of numbers (temperature readings)

```
spark.sql("""
SELECT id, val, filter(val, t -> t > 38) as high
FROM temp data""").show()
```

+---+
|id |temp_celsius |high |
+---+
|1 |[35, 36, 32, 30, 40, 42, 38]|[40, 42]|
|2 |[31, 32, 34, 55, 56] |[55, 56]|
+---+

Python UDF (User Defined Functions)

- Faster serialization (data movement Python JVM)
- Send Pandas series to Python UDF for "bulk processing"

```
import pandas as pd
from pyspark.sql.functions import pandas_udf
@pandas_udf("long")
def multiply_func(a: pd.Series, b: pd.Series) -> pd.Series:
    return a * b
```

```
spark.udf.register("multiply_func", multiply_func)
```

```
sql("select multiply_func(1,1)").show()
sql("select multiply_func(id,2) from range(10)").show()
sql("select multiply_func(id,2) from range(10000)").collect()
```


Arrow UDF – Spark Improvement

- Improvement to UDF for Spark 3.3.0
 - Bypasses conversion to Pandas
 - Awkward array can be used instead of Pandas
 - Improved performance for complex data with arrays
 - Details at: https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Not es/Spark_MapInArrow.md
 - Originally, this started by needs of Coffea team
 - Finally implemented as mapInArrow
 - Somehow a compromise, as the original arrow_udf idea was rejected
 - Good that Spark PMC at Databricks picked this up anyways
 - See SPARK-37227 and the original PR #34505

Demo 3

• HEP analysis benchmark notebooks

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

• Thanks to: https://iris-hep.org/projects/adl-benchmarksindex.html

Demo 4

- Outreach-style analysis
- Using Spark and Parquet: more familiar tools to data scientists outside HEP

• See example Higgs boson analysis at:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

Previous Work (ML for HEP)

- Machine learning pipeline
 - Spark used for HEP data preparation at scale
 - DL distributed training on cloud resources
 - with TensorFlow on GPU + also tested with Spark on CPU
 - Comput Softw Big Sci 4, 8 (2020) https://rdcu.be/b4Wk9

Previous Work (Data Reduction)

- CMS Bigdata project
- Data reduction at scale with Spark, up to 1 PB
 - This focused on scaling out a simple computation/filter and running massive I/O in parallel https://doi.org/10.1051/epjconf/201921406030

Runtime performance in minutes for different input sizes Config: 100 Spark executors, 8 cores per Spark executor, 7 GB per Spark executor. CPU: running on YARN. Storage: reading from EOS using Hadoop-XRootD connector 28

Lessons Learned and Wrap-up

What Spark Can Offer to HEP

- Spark DataFrame API:
 - Provide powerful abstractions and rich language(s)
 - Both for data preparation and analysis
 - Mature and an industry reference
 - Can handle complex schemas
- Run DataFrame locally and at scale using distributed computing
 - Runs on clusters and cloud (YARN/Hadoop, Kubernetes)
 - HPC and batch: can run Spark stand-alone (requires extra integration work)
- Integration with a large ecosystem
 - Can use for many file formats: Parquet, csv, ROOT, ...
 - Storage systems: HDFS, S3, EOS, ...
 - External systems: databases, elastic search, streaming, etc

To Improve: Performance Gap

- Apache Spark Performance
 - Identified several areas of improvement for Apache Spark (3.2)
- Python UDF performance
 - Sending data to Python workers has been improved but still slow
- Spark functions
 - Higher order functions performance need improvements
 - More array functions and functions for Lorentz vector processing?
- Spark engine
 - Apache Spark does not (yet) have vectorized execution
 - State-of-the-art HEP tools have large parts running native code vs. Spark is currently mostly Scala and Java running on the JVM (JIT compiled).

Open Questions: Data Formats

- ROOT data format ingestion is not optimized for Spark
 - It's a hard job with limited resources
 - Kudos to Andrew for Laurelin library + uproot team
- Apache Parquet and ORC
 - Optimized reader for Spark, supported by a large community
- The flatter the data the better
 - Data in nanoAOD format already much easier to process with Spark than deeply nested AOD

Plans and Future Work

- Gather feedback
- Develop further examples and benchmarks
 - Trailing on work done with Coffea/awkward array and with ROOT/RDataFrame
- Piggyback on Apache Spark improvements
 - Spark is still improving quite fast
- Work with community (HEP and Spark)
 - We noticed some interest by Apache Spark committers on understanding HEP use cases
 - Occasionally work together, as in the case of arrow UDF, also currently open <u>SPARK-34265</u> and <u>SPARK-38098</u>
 - Some physicists also interested in trying out Spark ?

References + Acknowledgments

- <u>Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics</u>, Matteo Migliorini, Riccardo Castellotti, Luca Canali, Marco Zanetti, *Comput Softw Big Sci* **4**, 8 (2020).
- Using Big Data Technologies for HEP Analysis, M. Cremonesi et al., EPJ Web of Conferences 214, 06030 (2019)
- Evolution of the Hadoop Platform and Ecosystem for High Energy Physics, Z. Baranowski et al., EPJ Web of Conferences 214, 04058 (2019)
- <u>Big Data Tools and Cloud Services for High Energy Physics Analysis in TOTEM Experiment</u>, V. Avati *et al.*, 2018, Proceeding of: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)
- CMS Analysis and Data Reduction with Apache Spark, O. Gutsche et al. 2018 J. Phys.: Conf. Ser. 1085 042030
- Evaluating Query Languages and Systems for High-Energy Physics Data, Dan Graur, Ingo Müller, Mason Proffitt, Ghislain Fourny, Gordon T. Watts, Gustavo Alonso, Proc. VLDB Endow., Vol 15, Issue 2 (2021).
- Get started with Spark at CERN: https://hadoop-user-guide.web.cern.ch/
- Thanks:
 - to the teams in the IT Hadoop, Spark and streaming service, and in the SWAN service, in particular to Riccardo Castellotti.
 - to the members and contributors to the (now finished) openlab project on data analysis with CMS
 - to Jim Pivarski, Andrew Melo, Lindsey Grey for discussion and their work on Spark arrow integration improvements and Spark-ROOT format integration
 - Lukas Heinrich, Gordon Watts, Ghislain Fourny, Ingo Müller, for discussions.
 - Ruslan Dautkhanov and Hyukjin Kwon from Databricks for their work and support on adding mapInArrow
 - Matteo Migliorini and Marco Zanetti for the work on ML pipelines.

