Investigating Apache Spark for Physics Analysis

Luca Canali
CERN IT, Spark and Analytics Service
May 2022

CE/RW
\

N4

Speaker

« Short intro: Luca Canali
« Data engineer at CERN IT

« Working with Spark and Hadoop/Big Data services in
IT-DB/IT-DA since its start in 2016.

Previously participated in the CMS Big Data Project
https://cms-big-data.qgithub.io/

Contributed (minor features/patches) to Apache Spark

« Oracle DBA at CERN, since 2005. Working with IT and
ATLAS DBA teams.

https://cms-big-data.github.io/

Motivations and Scope

Context: Spark service at CERN
Recent work on Spark Arrow UDF + work on implementing

example analyses using PySpark on Jupyter notebooks

Blog: Can High Energy Physics Analysis Profit from Apache Spark APIs?
https://db-blog.web.cern.ch/node/186

- |l will mix an intro to Spark with notebooks examples

Final thoughts on what | believe works OK with this approach and
what needs improvements

Not a goal: compete with state-of-the art software for analysis

@) ;

Nf =,

https://db-blog.web.cern.ch/node/186

Apach K E
pache Spark Ecosystem sp&rk

Use cases Data Streaming Machine Graph
analysis | Applications | Learning Processing
Csv
Laptop
SQL, Python, Scala, Java, R e
Hadoop
YARN Libraries f Data
ormats
SparkSQL’ | Spark MLlib GraphX
Clusters Kubernetes DataFrames| Streaming Parquet
Spark Core engine
Standalone P 9 Avro
)
ROOT
loud | her d |
Streaming Clou Other data
Storage Hadoop ‘ EOS ‘ ‘ MR data (S3...) sources

Apache Spark Adoption

Who is using Spark, how, and why? %

« Databricks

They sell a cloud-based analytics platform, centered around Spark
Development in the Spark ecosystem (Data Lakehouse, MLFlow)
They also have custom Spark improvements

Top contributors and drivers of the open-source development

- Cloud vendors
All offer user-facing “Big Data” platforms, typically including Spark

- Many tech giants use it internally: Facebook, Apple, MS,
Baidu, Netflix, etc

Some contribute back to Spark development (Apache Spark PMCs)

CERN)I
Nl

5

Spark @ CERN

Key component of the Hadoop platforms.
« IT monitoring, IT security

« Experiments computing data
« Physics: RDataFrame, CMS Spark, CMS Muon POG

We also provide Spark on Kubernetes clusters

User-access
« Notebooks, often via SWAN. Some use of Spark on R
« Batch jobs: Python, Scala, Java

NXCals platform
« Critical logging system for the accelerator complex
= « Platform based on Hadoop, API based on Spark

CERN

N

Demo 1

« Can Apache Spark run basic physics analysis?
- Let’s start with a “Hello World!” example

- Dimuon mass spectrum analysis at
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

W‘ :

N4

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Main Data Abstraction: Spark DataFrames

©
=
[
<
Q
w
o3
[=4
[S]
=
[
8
c
o
=
o
=1
E

Storage

d
Veeecseneer “ccccscce? ‘ccccccncs? ‘caccsccssr ‘ccccccses '---.‘----

The dataframe
offers an API.
Dataframe
The dataframe
Dataset<Row> has named
__ N columns.
TOBJECTID: | HSISID ! NAME :'ADDRESSI:: oy i L . J
v l'.'.'.'.'.'.‘. IS UL, '; ''''''''''''' H
sting ah o sting+1 sting 11 sting i sting 1) sting i
‘ ' Row #1 ‘ '] w
M . : Each column
Row #2] is typed.
Ro:/v #3]
Row 4)
Ro.w #5 U
. "\ The dataframe
' ' Parlltlon #1 : exposes the
1001] [04092016..] [WABA [2502 172..] [RALEIGH] [:;:e:;:a §:t.
1002 | [04092021.] [WALMAR] 2010 KIL..] [CARY]]
1003] [04092017.] [CAROLIN] [5951-107..] [RALEIGH] [] ‘—\
1004 | (04092030..] [THE COR..| [7500 RA...| [RALEIGH | [) The dataframe
1005 [04092015] [SUBWAY [12233 CA.. [WAKE F] (fg’:?s::i?:t‘e g

S

(—/‘

Data is split into
partitions.

storage.

The dataframe is composed
of typed columns.

DataFrame is a table-like abstraction
e similar to Pandas DF

Handles data with a schema

DFs are partitioned and immutable
e enables parallel execution
e and fault tolerance at scale

Figure from “Spark in action”, Jean-Georges Perrin,
Manning, 2020 8

https://learning.oreilly.com/library/view/spark-in-action/9781617295522/

Data Formats: ROQOT, Parquet

- Data format is key for performance
« ROOT can be ingested by Spark using Laurelin by A. Melo

« Uproot and Laurelin can also be used to convert from ROOT to
Parquet

- Spark is optimized for Apache Parquet (and ORC too)

« Columnar format, with encoding, compression, schema
« Spark has a custom vectorized Parquet reader, for performance

« Filter pushdown
Filters can be resolved at the Parquet level
Statistics of min/max and other metadata
Recently also bloom filters

CERN)I

\
Nf =,

CE/RW
\

N4

DataFrame API| Basics

- Selections and projection are easily scalable
- Filter operations naturally fit with the DataFrame API

Apply filters to the input data
- select only events with 2 muons
- select only events where the 2 muons have opposite charge

df muons = df _muons.filter("nMuon == 2").filter("Muon_charge[8] != Muon_charge[1]")

- Expressions and formulas

df with_dimuwonmass = df _muons.selectExpr({"""
sgrit(2 * Muon_pt[8&] * Muon_pt[l] *
{ cosh{Muon_eta[8] - Muon_eta[l]) - cos{Muon_phi[8] - Muon_phi[1])})
)} as Dimuon_mass""")

10

Histograms with the DataFrame API

- Operation with data aggregation/shuffle
- Implemented using the width _bucket function

Works on many SQL engines

histogram data = {
df with dimuonmass
selectExpr(f"width _bucket(Dimuon_mass, {min _wvall}, {max wval}, {num _bins}) as bucket")
groupBy ("bucket")
count()
.orderBy("bucket")

)

convert bucket number to the corresponding dimoun mass value
histogram_data = histogram_data.selectExpr(f"round({min_wval} + (bucket - 1/2) * [step},2) as wvalue"”, "count as N_events")

N4

Actions and Transformations

Two types of operations on DataFrames:
- Transformations: transform a DF in another one:
filter, select, ...

- Actions: trigger computation and return value

- collect, toPandas, ...

Lazy evaluation and immutability:
- Spark parses and optimizes only when an action is requested

- You can express DataFrame transformations using many steps, for readability
- Fault tolerance

- the transformations can be replayed on the original DF (or on some of its partitions)

12

NS

Spark Actions and DAG

. Invoking an action creates a job which is then divided In
stages and executed by tasks.
Spark defines the computation using graphs (DAG).
Operations are grouped In stages.
Uses map-shuffle-reduce operations.

CE/RW
\

13

Execution DAG From the WebUI

Stage 7 Stage 8 Stage 9 Stage 10

parallelize parallelize Exchange Exchange Exchange

WholeStageCodeggn (2)
4

WholeStageCodegen (4) WholeStageCodegen (6)

mapPartitions mapPartitiopis

mapPartitipnsinternal

map

mapPartitions mapPartitions

WholeStageCodegen (1) WholgStageCodegen (3)

3

dfl.filter(dfl.id>4).join(df2, dfl.id==df2.id).count()

14

Spark Tasks and Executors

. Tasks are the units of parallelization and are run
concurrently on the available executors.

. Executors are the scalable engines that run tasks
From local mode (laptop) to 1000s of executors

Executors are JVM instances
They have associated CPU cores, memory

Executors as containers
execution engines / clusters: K8S, YARN, Stand alone Spark cluster

‘ 15
cE)

NS

CE/RW
\

NS

How Spark Runs Jobs at Scale

Driver
Executor Executor
) 4'3 (A
W e wm wm wm mm = (
Spark Session F = ﬂ.-_?:i__ Executor | = Executor
oy A = - L L... 0
¢ 14 K
User code .= =’ =
Y | \ 4 Y

Cluster Manager

Apache Spark Clusters at CERN

- Spark running on clusters:
. YARN/Hadoop -> established
. Spark on Kubernetes -> growing adoption

Accelerator logging
(part of LHC
infrastructure)

Hadoop - YARN - 30 nodes
(Cores - 1200, Mem - 13 TB, Storage — 7.5 PB)

General Purpose

Hadoop - YARN, 47 nodes
(Cores — 2.0k, Mem — 25 TB, Storage — 16 PB)

Cloud containers

Kubernetes on Openstack VMs, Cores - 270, Mem — 2 TB
Storage: remote HDFS or custom storage (CERN EOS, for
physics data, S3 on Ceph also available).

Note: GPU resources available.

SWAN Integration with Apache Spark

SWAN service: https://swan.web.cern.ch/swan/
Notebooks for web-based analysis
Integrated with CERN Spark Clusters
Reduces configuration complexity for users
CERN software environment
Software from CVMFS
Graphical Jupyter extensions developed
Spark Connector
Spark Monitor
Access to Spark Clusters

NXCals: — Dedicated cluster for accelerator
logging
Analytix: — General purpose YARN cluster

Cloud Containers: — General purpose Kubernetes
cluster

Storage access: HDFS, EOS, S3

& ser Notebook

|

Spark Driver

Python task

W

Spark Executors

Python task Python task

Carmvi «
File system ‘@F%C;?E@@ﬂ i

o

Spark Cluster

STk

18

https://swan.web.cern.ch/swan/

Demo 2

- Dimuon mass spectrum analysis on a cluster:
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

&) 1

N g

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Spark can Handle Complex Schemas

Example of complex schema for HEP

df .printSchema ()

| -- event: long (nullable = true)
| -- HLT: struct (nullable = true)
| | -- flagl: boolean (nullable = true)
| | -- flag2: boolean (nullable

| -- muons: array (nullable = true)

true)

| | -— element: struct (containsNull = true)
| |-- pt: float (nullable = true)

| | -- eta: float (nullable = true)

| |-- phi: float (nullable = true)

| | -— mass: float (nullable = true)

CE/RW
\

NS

Handling Arrays

. Nested data is hard to handle
Does not fit naturally to DataFrame and SQL operations

. Avallable solutions in Spark
Array functions
Several available, example: array_min, array_sort, array_zip, ...
“Explode” function
Transforms array values into DataFrame rows
Higher order functions
Process map/filter/aggregate on arrays elements (see next slide)
UDF: User-defined functions

General solution.
‘ . Spark UDF can be in Python or Scala

21

Spark Higher Order Functions

Push filters, maps and reduce into arrays with
higher order functions

Array processing with Spark higher order functions in SQL

Filter values > 38 from an array of numbers (temperature readings)

spark.sql ("""
SELECT id, val,
FROM temp data""") .show ()

e et e e +-—— - +
|id |temp celsius

o - +-—— - +
|11 | [35, 36, 32, 30, 40, 42, 38]|[40, 42]|
12 |[31, 32, 34, 55, 56] | [55, 56]|

22

Python UDF (User Defined Functions)

- Faster serialization (data movement Python - JVM)
- Send Pandas series to Python UDF for "bulk processing”

import pandas as pd

)

from pyspark.sql.functions import pandas udf =
JVM Java
@pandas_udf ("long") Spark DataFrame/SQL

def multiply func(a: pd.Series, b: pd.Series) -> pd.Series: ‘l

Serialize/deserialize

in batches of 10000 rows
into Pandas series

Using pyarrow

return a * b
spark.udf.register ("multiply func", multiply func)

sql ("select multiply func(1,1)").show() ﬁ
sql ("select multiply func(id,2) from range(10)") .show()

sql ("select multiply func(id,2) from range (10000)") .collect()

) 23

Arrow UDF — Spark Improvement
- Improvement to UDF for Spark 3.3.0

« Bypasses conversion to Pandas
Awkward array can be used instead of Pandas

Improved performance for complex data with arrays

Detalls at:
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Not
es/Spark_MapIinArrow.md

« Originally, this started by needs of Coffea team

« Finally implemented as mapInArrow
Somehow a compromise, as the original arrow_udf idea was rejected
Good that Spark PMC at Databricks picked this up anyways

2 ‘ « See SPARK-37227 and the original PR #34505
\ERN 24

N g

https://issues.apache.org/jira/browse/SPARK-37227
https://github.com/apache/spark/pull/34505

Demo 3

- HEP analysis benchmark notebooks
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

- Thanks to: https://iris-hep.org/projects/adl-benchmarks-
index.html

N4

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Demo 4

Outreach-style analysis

Using Spark and Pargquet: more familiar tools to data
scientists outside HEP

See example Higgs boson analysis at:
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark Physics

26

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Previous Work (ML for HEP)

- Machine learning pipeline
« Spark used for HEP data preparation at scale

« DL distributed training on cloud resources

- with TensorFlow on GPU + also tested with Spark on CPU
. Comput Softw Big Sci 4, 8 (2020) https://rdcu.be/b4Wk9

eeeeeeeee

A = - ? =
jopytsr Keras Bmm] |
o~ TensorFlow §
Data and models |:> ¢ :> - r; — .
I RESEETET | — & AAAAAA q AAAAAA q |:> v =
Spark’ Spark’ Spark I
:Jlnari;t;llr?c? E[})Iid Feature Hyperparameter Distributed model Output: particle
models engineering at optimization training selector model
scale (Random/Grid search)
o)

N7

27

Previous Work (Data Reduction)

- CMS Bigdata project

- Data reduction at scale with Spark, up to 1 PB

« This focused on scaling out a simple computation/filter and running
massive I/O in parallel https://doi.org/10.1051/epjconf/201921406030

250

200

[
ol
o

[
o
o

Runtime (Minutes)

Runtime performance in minutes for different input sizes
I Config: 100 Spark executors, 8 cores per Spark executor, 7
GB per Spark executor.
- - CPU: running on YARN.
CE/RW 2278 44TB 110TB 220TB PB Storage: reading from EOS using Hadoop-XRootD connector

/) Dataset Siz t 28

Ul
o

o

Lessons Learned and Wrap-up

29

What Spark Can Offer to HEP

Spark DataFrame API:

. Provide powerful abstractions and rich language(s)
Both for data preparation and analysis

. Mature and an industry reference

. Can handle complex schemas

Run DataFrame locally and at scale using distributed computing
Runs on clusters and cloud (YARN/Hadoop, Kubernetes)
HPC and batch: can run Spark stand-alone (requires extra integration work)

Integration with a large ecosystem
Can use for many file formats: Parquet, csv, ROOT, ...
Storage systems: HDFS, S3, EQOS, ...
External systems: databases, elastic search, streaming, etc 30

To Improve: Performance Gap

Apache Spark Performance
. |dentified several areas of improvement for Apache Spark (3.2)

- Python UDF performance
Sending data to Python workers has been improved but still slow

- Spark functions
Higher order functions performance need improvements
More array functions and functions for Lorentz vector processing?

- Spark engine
Apache Spark does not (yet) have vectorized execution

State-of-the-art HEP tools have large parts running native code vs. Spark is
CERN currently mostly Scala and Java running on the JVM (JIT compiled).

N

31

Open Questions: Data Formats

- ROOQOT data format ingestion is not optimized for Spark
It's a hard job with limited resources
Kudos to Andrew for Laurelin library + uproot team

- Apache Parquet and ORC
Optimized reader for Spark, supported by a large community

- The flatter the data the better

Data in nanoAOD format already much easier to process with
Spark than deeply nested AOD

N 2

N7

Plans and Future Work

- Gather feedback

- Develop further examples and benchmarks
Trailing on work done with Coffea/awkward array and with
ROOT/RDataFrame

- Piggyback on Apache Spark improvements
Spark is still improving quite fast

- Work with community (HEP and Spark)

We noticed some interest by Apache Spark committers on understanding
HEP use cases

Occasionally work together, as in the case of arrow UDF, also currently
open SPARK-34265 and SPARK-38098

oy « Some physicists also interested in trying out Spark ? 33

N

https://issues.apache.org/jira/browse/SPARK-34265
http://issues.apache.org/jira/browse/SPARK-38098

CERN

N

References + Acknowledgments

« Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics, Matteo Migliorini, Riccardo
Castellotti, Luca Canali, Marco Zanetti, Comput Softw Big Sci 4, 8 (2020).

 Using Big Data Technologies for HEP Analysis, M. Cremonesi et al., EPJ Web of Conferences 214, 06030 (2019)
 Evolution of the Hadoop Platform and Ecosystem for High Energy Physics, Z. Baranowski et al., EPJ Web of
Conferences 214, 04058 (2019)

 Big Data Tools and Cloud Services for High Energy Physics Analysis in TOTEM Experiment, V. Avati et al., 2018,
Proceeding of: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion)

* CMS Analysis and Data Reduction with Apache Spark, O. Gutsche et al. 2018 J. Phys.: Conf. Ser.1085 042030
» Evaluating Query Languages and Systems for High-Energy Physics Data, Dan Graur, Ingo Muller, Mason
Proffitt, Ghislain Fourny, Gordon T. Watts, Gustavo Alonso, Proc. VLDB Endow., Vol 15, Issue 2 (2021).

» Get started with Spark at CERN: https://hadoop-user-guide.web.cern.ch/

* Thanks:
- to the teams in the IT Hadoop, Spark and streaming service, and in the SWAN service, in particular to Riccardo Castellotti.
* to the members and contributors to the (now finished) openlab project on data analysis with CMS
* to Jim Pivarski, Andrew Melo, Lindsey Grey for discussion and their work on Spark arrow integration improvements and Spark-
ROOT format integration
* Lukas Heinrich, Gordon Watts, Ghislain Fourny, Ingo Mduller, for discussions.
* Ruslan Dautkhanov and Hyukjin Kwon from Databricks for their work and support on adding mapIlnArrow
* Matteo Migliorini and Marco Zanetti for the work on ML pipelines.

34

https://rdcu.be/b4Wk9
https://doi.org/10.1051/epjconf/201921406030
https://doi.org/10.1051/epjconf/201921404058
https://ieeexplore.ieee.org/document/8605741
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042030/meta
https://arxiv.org/abs/2104.12615
https://hadoop-user-guide.web.cern.ch/

