
Investigating Apache Spark for Physics Analysis

Luca Canali
CERN IT, Spark and Analytics Service
May 2022

1

Speaker

• Short intro: Luca Canali

• Data engineer at CERN IT

• Working with Spark and Hadoop/Big Data services in

IT-DB/IT-DA since its start in 2016.

• Previously participated in the CMS Big Data Project

https://cms-big-data.github.io/

• Contributed (minor features/patches) to Apache Spark

• Oracle DBA at CERN, since 2005. Working with IT and

ATLAS DBA teams.

2

https://cms-big-data.github.io/

Motivations and Scope
• Context: Spark service at CERN

• Recent work on Spark Arrow UDF + work on implementing

example analyses using PySpark on Jupyter notebooks

• Blog: Can High Energy Physics Analysis Profit from Apache Spark APIs?

https://db-blog.web.cern.ch/node/186

• I will mix an intro to Spark with notebooks examples

• Final thoughts on what I believe works OK with this approach and

what needs improvements

• Not a goal: compete with state-of-the art software for analysis

3

https://db-blog.web.cern.ch/node/186

4

Apache Spark Ecosystem
Use cases

Storage

Data
formats

Clusters

ROOT

Apache Spark Adoption
• Who is using Spark, how, and why?

• Databricks
• They sell a cloud-based analytics platform, centered around Spark

• Development in the Spark ecosystem (Data Lakehouse, MLFlow)

• They also have custom Spark improvements

• Top contributors and drivers of the open-source development

• Cloud vendors
• All offer user-facing “Big Data” platforms, typically including Spark

• Many tech giants use it internally: Facebook, Apple, MS,
Baidu, Netflix, etc
• Some contribute back to Spark development (Apache Spark PMCs)

5

Spark @ CERN
• Key component of the Hadoop platforms.

• IT monitoring, IT security

• Experiments computing data

• Physics: RDataFrame, CMS Spark, CMS Muon POG

• We also provide Spark on Kubernetes clusters

• User-access
• Notebooks, often via SWAN. Some use of Spark on R

• Batch jobs: Python, Scala, Java

• NXCals platform
• Critical logging system for the accelerator complex

• Platform based on Hadoop, API based on Spark
6

Demo 1
• Can Apache Spark run basic physics analysis?

• Let’s start with a “Hello World!” example

• Dimuon mass spectrum analysis at

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

7

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Main Data Abstraction: Spark DataFrames

Figure from “Spark in action”, Jean-Georges Perrin,

Manning, 2020 8

https://learning.oreilly.com/library/view/spark-in-action/9781617295522/

Data Formats: ROOT, Parquet
• Data format is key for performance

• ROOT can be ingested by Spark using Laurelin by A. Melo

• Uproot and Laurelin can also be used to convert from ROOT to
Parquet

• Spark is optimized for Apache Parquet (and ORC too)
• Columnar format, with encoding, compression, schema

• Spark has a custom vectorized Parquet reader, for performance

• Filter pushdown
• Filters can be resolved at the Parquet level

• Statistics of min/max and other metadata

• Recently also bloom filters

9

DataFrame API Basics
• Selections and projection are easily scalable

• Filter operations naturally fit with the DataFrame API

• Expressions and formulas

10

Histograms with the DataFrame API
• Operation with data aggregation/shuffle

• Implemented using the width_bucket function
• Works on many SQL engines

11

12

Actions and Transformations
● Two types of operations on DataFrames:

– Transformations: transform a DF in another one:

● filter, select, …

– Actions: trigger computation and return value

– collect, toPandas, …

● Lazy evaluation and immutability:

– Spark parses and optimizes only when an action is requested

– You can express DataFrame transformations using many steps, for readability

– Fault tolerance

– the transformations can be replayed on the original DF (or on some of its partitions)

13

Spark Actions and DAG
● Invoking an action creates a job which is then divided in

stages and executed by tasks.

● Spark defines the computation using graphs (DAG).

● Operations are grouped in stages.

● Uses map-shuffle-reduce operations.

Execution DAG From the WebUI

df1.filter(df1.id>4).join(df2, df1.id==df2.id).count()

14

15

Spark Tasks and Executors
● Tasks are the units of parallelization and are run

concurrently on the available executors.

● Executors are the scalable engines that run tasks

● From local mode (laptop) to 1000s of executors

● Executors are JVM instances

● They have associated CPU cores, memory

● Executors as containers

● execution engines / clusters: K8S, YARN, Stand alone Spark cluster

16

How Spark Runs Jobs at Scale

Apache Spark Clusters at CERN

• Spark running on clusters:

• YARN/Hadoop -> established

• Spark on Kubernetes -> growing adoption

Accelerator logging

(part of LHC

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 47 nodes

(Cores – 2.0k, Mem – 25 TB, Storage – 16 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 270, Mem – 2 TB

Storage: remote HDFS or custom storage (CERN EOS, for

physics data, S3 on Ceph also available).

Note: GPU resources available.

17

Spark Cluster

SWAN Integration with Apache Spark

• SWAN service: https://swan.web.cern.ch/swan/
• Notebooks for web-based analysis

• Integrated with CERN Spark Clusters
• Reduces configuration complexity for users

• CERN software environment
• Software from CVMFS

• Graphical Jupyter extensions developed
• Spark Connector

• Spark Monitor

• Access to Spark Clusters
• NXCals: – Dedicated cluster for accelerator

logging

• Analytix: – General purpose YARN cluster

• Cloud Containers: – General purpose Kubernetes
cluster

• Storage access: HDFS, EOS, S3

18

Spark Driver

Spark Executors

Python task Python task Python task

User Notebook

https://swan.web.cern.ch/swan/

Demo 2
• Dimuon mass spectrum analysis on a cluster:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

19

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Spark can Handle Complex Schemas

20

• Example of complex schema for HEP
schema = "event LONG, HLT struct<flag1:boolean, flag2:boolean>, muons

ARRAY<STRUCT<pt:FLOAT, eta:FLOAT, phi:FLOAT, mass:FLOAT>>"

df.printSchema()

|-- event: long (nullable = true)

|-- HLT: struct (nullable = true)

| |-- flag1: boolean (nullable = true)

| |-- flag2: boolean (nullable = true)

|-- muons: array (nullable = true)

| |-- element: struct (containsNull = true)

| | |-- pt: float (nullable = true)

| | |-- eta: float (nullable = true)

| | |-- phi: float (nullable = true)

| | |-- mass: float (nullable = true)

21

Handling Arrays
● Nested data is hard to handle

● Does not fit naturally to DataFrame and SQL operations

● Available solutions in Spark
● Array functions

● Several available, example: array_min, array_sort, array_zip, …

● “Explode” function

● Transforms array values into DataFrame rows

● Higher order functions

● Process map/filter/aggregate on arrays elements (see next slide)

● UDF: User-defined functions

● General solution.

● Spark UDF can be in Python or Scala

Spark Higher Order Functions

22

• Push filters, maps and reduce into arrays with

higher order functions

Array processing with Spark higher order functions in SQL

Filter values > 38 from an array of numbers (temperature readings)

spark.sql("""

SELECT id, val, filter(val, t -> t > 38) as high

FROM temp_data""").show()

+---+----------------------------+--------+

|id |temp_celsius |high |

+---+----------------------------+--------+

|1 |[35, 36, 32, 30, 40, 42, 38]|[40, 42]|

|2 |[31, 32, 34, 55, 56] |[55, 56]|

+---+----------------------------+--------+

Python UDF (User Defined Functions)

• Faster serialization (data movement Python - JVM)

• Send Pandas series to Python UDF for “bulk processing”

23

import pandas as pd

from pyspark.sql.functions import pandas_udf

@pandas_udf("long")

def multiply_func(a: pd.Series, b: pd.Series) -> pd.Series:

return a * b

spark.udf.register("multiply_func", multiply_func)

sql("select multiply_func(1,1)").show()

sql("select multiply_func(id,2) from range(10)").show()

sql("select multiply_func(id,2) from range(10000)").collect()

JVM

Spark DataFrame/SQL

Python

runs Pandas_UDF

Serialize/deserialize

in batches of 10000 rows

into Pandas series

Using pyarrow

Arrow UDF – Spark Improvement
• Improvement to UDF for Spark 3.3.0

• Bypasses conversion to Pandas

• Awkward array can be used instead of Pandas

• Improved performance for complex data with arrays

• Details at:
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Not
es/Spark_MapInArrow.md

• Originally, this started by needs of Coffea team

• Finally implemented as mapInArrow

• Somehow a compromise, as the original arrow_udf idea was rejected

• Good that Spark PMC at Databricks picked this up anyways

• See SPARK-37227 and the original PR #34505

24

https://issues.apache.org/jira/browse/SPARK-37227
https://github.com/apache/spark/pull/34505

Demo 3
• HEP analysis benchmark notebooks

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

• Thanks to: https://iris-hep.org/projects/adl-benchmarks-
index.html

25

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Demo 4
• Outreach-style analysis

• Using Spark and Parquet: more familiar tools to data

scientists outside HEP

• See example Higgs boson analysis at:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

26

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

Previous Work (ML for HEP)
• Machine learning pipeline

• Spark used for HEP data preparation at scale

• DL distributed training on cloud resources

• with TensorFlow on GPU + also tested with Spark on CPU

• Comput Softw Big Sci 4, 8 (2020) https://rdcu.be/b4Wk9

27

Data and models

from Research

Input: labeled

data and DL

models

Feature

engineering at

scale

Distributed model

training

Output: particle

selector model
Hyperparameter

optimization

(Random/Grid search)

Previous Work (Data Reduction)
• CMS Bigdata project

• Data reduction at scale with Spark, up to 1 PB

• This focused on scaling out a simple computation/filter and running

massive I/O in parallel https://doi.org/10.1051/epjconf/201921406030

28

Runtime performance in minutes for different input sizes

Config: 100 Spark executors, 8 cores per Spark executor, 7

GB per Spark executor.

CPU: running on YARN.

Storage: reading from EOS using Hadoop-XRootD connector

Lessons Learned and Wrap-up

29

What Spark Can Offer to HEP
• Spark DataFrame API:

• Provide powerful abstractions and rich language(s)

• Both for data preparation and analysis

• Mature and an industry reference

• Can handle complex schemas

• Run DataFrame locally and at scale using distributed computing
• Runs on clusters and cloud (YARN/Hadoop, Kubernetes)

• HPC and batch: can run Spark stand-alone (requires extra integration work)

• Integration with a large ecosystem
• Can use for many file formats: Parquet, csv, ROOT, …

• Storage systems: HDFS, S3, EOS, ...

• External systems: databases, elastic search, streaming, etc 30

To Improve: Performance Gap
• Apache Spark Performance

• Identified several areas of improvement for Apache Spark (3.2)

• Python UDF performance
• Sending data to Python workers has been improved but still slow

• Spark functions
• Higher order functions performance need improvements

• More array functions and functions for Lorentz vector processing?

• Spark engine
• Apache Spark does not (yet) have vectorized execution

• State-of-the-art HEP tools have large parts running native code vs. Spark is
currently mostly Scala and Java running on the JVM (JIT compiled).

31

Open Questions: Data Formats
• ROOT data format ingestion is not optimized for Spark

• It’s a hard job with limited resources

• Kudos to Andrew for Laurelin library + uproot team

• Apache Parquet and ORC
• Optimized reader for Spark, supported by a large community

• The flatter the data the better
• Data in nanoAOD format already much easier to process with

Spark than deeply nested AOD

32

Plans and Future Work
• Gather feedback

• Develop further examples and benchmarks

• Trailing on work done with Coffea/awkward array and with

ROOT/RDataFrame

• Piggyback on Apache Spark improvements

• Spark is still improving quite fast

• Work with community (HEP and Spark)

• We noticed some interest by Apache Spark committers on understanding

HEP use cases

• Occasionally work together, as in the case of arrow UDF, also currently

open SPARK-34265 and SPARK-38098

• Some physicists also interested in trying out Spark ? 33

https://issues.apache.org/jira/browse/SPARK-34265
http://issues.apache.org/jira/browse/SPARK-38098

References + Acknowledgments
• Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics, Matteo Migliorini, Riccardo
Castellotti, Luca Canali, Marco Zanetti, Comput Softw Big Sci 4, 8 (2020).
• Using Big Data Technologies for HEP Analysis, M. Cremonesi et al., EPJ Web of Conferences 214, 06030 (2019)
• Evolution of the Hadoop Platform and Ecosystem for High Energy Physics, Z. Baranowski et al., EPJ Web of
Conferences 214, 04058 (2019)
• Big Data Tools and Cloud Services for High Energy Physics Analysis in TOTEM Experiment, V. Avati et al., 2018,
Proceeding of: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC
Companion)
• CMS Analysis and Data Reduction with Apache Spark, O. Gutsche et al. 2018 J. Phys.: Conf. Ser.1085 042030
• Evaluating Query Languages and Systems for High-Energy Physics Data, Dan Graur, Ingo Müller, Mason
Proffitt, Ghislain Fourny, Gordon T. Watts, Gustavo Alonso, Proc. VLDB Endow., Vol 15, Issue 2 (2021).

• Get started with Spark at CERN: https://hadoop-user-guide.web.cern.ch/

• Thanks:
• to the teams in the IT Hadoop, Spark and streaming service, and in the SWAN service, in particular to Riccardo Castellotti.
• to the members and contributors to the (now finished) openlab project on data analysis with CMS
• to Jim Pivarski, Andrew Melo, Lindsey Grey for discussion and their work on Spark arrow integration improvements and Spark-
ROOT format integration
• Lukas Heinrich, Gordon Watts, Ghislain Fourny, Ingo Müller, for discussions.
• Ruslan Dautkhanov and Hyukjin Kwon from Databricks for their work and support on adding mapInArrow
• Matteo Migliorini and Marco Zanetti for the work on ML pipelines.

34

https://rdcu.be/b4Wk9
https://doi.org/10.1051/epjconf/201921406030
https://doi.org/10.1051/epjconf/201921404058
https://ieeexplore.ieee.org/document/8605741
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042030/meta
https://arxiv.org/abs/2104.12615
https://hadoop-user-guide.web.cern.ch/

