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Speaker

• Short intro: Luca Canali

• Data engineer at CERN IT

• Working with Spark and Hadoop/Big Data services in 

IT-DB/IT-DA since its start in 2016.

• Previously participated in the CMS Big Data Project 

https://cms-big-data.github.io/

• Contributed (minor features/patches) to Apache Spark

• Oracle DBA at CERN, since 2005. Working with IT and 

ATLAS DBA teams.
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Motivations and Scope
• Context: Spark service at CERN

• Recent work on Spark Arrow UDF + work on implementing 

example analyses using PySpark on Jupyter notebooks 

• Blog: Can High Energy Physics Analysis Profit from Apache Spark APIs? 

https://db-blog.web.cern.ch/node/186

• I will mix an intro to Spark with notebooks examples

• Final thoughts on what I believe works OK with this approach and 

what needs improvements

• Not a goal: compete with state-of-the art software for analysis
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Apache Spark Ecosystem
Use cases

Storage

Data
formats

Clusters

ROOT



Apache Spark Adoption
• Who is using Spark, how, and why?

• Databricks
• They sell a cloud-based analytics platform, centered around Spark

• Development in the Spark ecosystem (Data Lakehouse, MLFlow)

• They also have custom Spark improvements

• Top contributors and drivers of the open-source development

• Cloud vendors
• All offer user-facing “Big Data” platforms, typically including Spark

• Many tech giants use it internally: Facebook, Apple, MS, 
Baidu, Netflix, etc
• Some contribute back to Spark development (Apache Spark PMCs)
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Spark @ CERN
• Key component of the Hadoop platforms.

• IT monitoring, IT security

• Experiments computing data

• Physics: RDataFrame, CMS Spark, CMS Muon POG

• We also provide Spark on Kubernetes clusters

• User-access
• Notebooks, often via SWAN. Some use of Spark on R

• Batch jobs: Python, Scala, Java

• NXCals platform
• Critical logging system for the accelerator complex

• Platform based on Hadoop, API based on Spark
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Demo 1
• Can Apache Spark run basic physics analysis?

• Let’s start with a “Hello World!” example

• Dimuon mass spectrum analysis at

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics
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Main Data Abstraction: Spark DataFrames

Figure from “Spark in action”, Jean-Georges Perrin, 

Manning, 2020 8

https://learning.oreilly.com/library/view/spark-in-action/9781617295522/


Data Formats: ROOT, Parquet
• Data format is key for performance

• ROOT can be ingested by Spark using Laurelin by A. Melo

• Uproot and Laurelin can also be used to convert from ROOT to 
Parquet

• Spark is optimized for Apache Parquet (and ORC too)
• Columnar format, with encoding, compression, schema

• Spark has a custom vectorized Parquet reader, for performance

• Filter pushdown
• Filters can be resolved at the Parquet level

• Statistics of min/max and other metadata

• Recently also bloom filters
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DataFrame API Basics
• Selections and projection are easily scalable 

• Filter operations naturally fit with the DataFrame API

• Expressions and formulas
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Histograms with the DataFrame API
• Operation with data aggregation/shuffle

• Implemented using the width_bucket function
• Works on many SQL  engines
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Actions and Transformations
● Two types of operations on DataFrames:

– Transformations: transform a DF in another one:

● filter, select, …

– Actions: trigger computation and return value

– collect, toPandas, …

● Lazy evaluation and immutability:

– Spark parses and optimizes only when an action is requested

– You can express DataFrame transformations using many steps, for readability

– Fault tolerance

– the transformations can be replayed on the original DF (or on some of its partitions)
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Spark Actions and DAG
● Invoking an action creates a job which is then divided in 

stages and executed by tasks.

● Spark defines the computation using graphs (DAG). 

● Operations are grouped in stages.

● Uses map-shuffle-reduce operations.



Execution DAG From the WebUI

df1.filter(df1.id>4).join(df2, df1.id==df2.id).count()
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Spark Tasks and Executors
● Tasks are the units of parallelization and are run 

concurrently on the available executors.

● Executors are the scalable engines that run tasks

● From local mode (laptop) to 1000s of executors

● Executors are JVM instances

● They have associated CPU cores, memory

● Executors as containers

● execution engines / clusters: K8S, YARN, Stand alone Spark cluster
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How Spark Runs Jobs at Scale



Apache Spark Clusters at CERN

• Spark running on clusters: 

• YARN/Hadoop -> established

• Spark on Kubernetes -> growing adoption

Accelerator logging

(part of LHC 

infrastructure)

Hadoop - YARN - 30 nodes

(Cores - 1200, Mem - 13 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 47 nodes

(Cores – 2.0k, Mem – 25 TB, Storage – 16 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 270, Mem – 2 TB

Storage: remote HDFS or custom storage (CERN EOS, for 

physics data, S3 on Ceph also available).

Note: GPU resources available.
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Spark Cluster

SWAN Integration with Apache Spark

• SWAN service: https://swan.web.cern.ch/swan/
• Notebooks for web-based analysis

• Integrated with CERN Spark Clusters
• Reduces configuration complexity for users

• CERN software environment
• Software from CVMFS

• Graphical Jupyter extensions developed
• Spark Connector

• Spark Monitor

• Access to Spark Clusters
• NXCals: – Dedicated cluster for accelerator 

logging

• Analytix: – General purpose YARN cluster

• Cloud Containers: – General purpose Kubernetes 
cluster

• Storage access: HDFS, EOS, S3 
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Spark Driver

Spark Executors

Python task Python task Python task

User Notebook

https://swan.web.cern.ch/swan/


Demo 2
• Dimuon mass spectrum analysis on a cluster:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics
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Spark can Handle Complex Schemas
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• Example of complex schema for HEP
schema = "event LONG, HLT struct<flag1:boolean, flag2:boolean>, muons 

ARRAY<STRUCT<pt:FLOAT, eta:FLOAT, phi:FLOAT, mass:FLOAT>>"

df.printSchema()

|-- event: long (nullable = true)

|-- HLT: struct (nullable = true)

|    |-- flag1: boolean (nullable = true)

|    |-- flag2: boolean (nullable = true)

|-- muons: array (nullable = true)

|    |-- element: struct (containsNull = true)

|    |    |-- pt: float (nullable = true)

|    |    |-- eta: float (nullable = true)

|    |    |-- phi: float (nullable = true)

|    |    |-- mass: float (nullable = true)
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Handling Arrays
● Nested data is hard to handle

● Does not fit naturally to DataFrame and SQL operations

● Available solutions in Spark
● Array functions

● Several available, example: array_min, array_sort, array_zip, …

● “Explode” function

● Transforms array values into DataFrame rows

● Higher order functions

● Process map/filter/aggregate on arrays elements (see next slide)

● UDF: User-defined functions

● General solution. 

● Spark UDF can be in Python or Scala



Spark Higher Order Functions
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• Push filters, maps and reduce into arrays with 

higher order functions

# Array processing with Spark higher order functions in SQL

# Filter values > 38 from an array of numbers (temperature readings)

spark.sql("""

SELECT id, val, filter(val, t -> t > 38) as high 

FROM temp_data""").show()

+---+----------------------------+--------+

|id |temp_celsius |high    |

+---+----------------------------+--------+

|1  |[35, 36, 32, 30, 40, 42, 38]|[40, 42]|

|2  |[31, 32, 34, 55, 56]        |[55, 56]|

+---+----------------------------+--------+



Python UDF (User Defined Functions)

• Faster serialization (data movement Python - JVM)

• Send Pandas series to Python UDF for “bulk processing”
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import pandas as pd

from pyspark.sql.functions import pandas_udf

@pandas_udf("long")

def multiply_func(a: pd.Series, b: pd.Series) -> pd.Series:

return a * b

spark.udf.register("multiply_func", multiply_func)

sql("select multiply_func(1,1)").show()

sql("select multiply_func(id,2) from range(10)").show()

sql("select multiply_func(id,2) from range(10000)").collect()

JVM

Spark DataFrame/SQL

Python

runs Pandas_UDF

Serialize/deserialize

in batches of 10000 rows

into Pandas series

Using pyarrow



Arrow UDF – Spark Improvement
• Improvement to UDF for Spark 3.3.0

• Bypasses conversion to Pandas

• Awkward array can be used instead of Pandas

• Improved performance for complex data with arrays

• Details at: 
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Not
es/Spark_MapInArrow.md

• Originally, this started by needs of Coffea team

• Finally implemented as mapInArrow

• Somehow a compromise, as the original arrow_udf idea was rejected

• Good that Spark PMC at Databricks picked this up anyways

• See SPARK-37227 and the original PR #34505
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https://issues.apache.org/jira/browse/SPARK-37227
https://github.com/apache/spark/pull/34505


Demo 3
• HEP analysis benchmark notebooks

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics

• Thanks to: https://iris-hep.org/projects/adl-benchmarks-
index.html
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Demo 4
• Outreach-style analysis

• Using Spark and Parquet: more familiar tools to data 

scientists outside HEP

• See example Higgs boson analysis at:

https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Physics
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Previous Work (ML for HEP)
• Machine learning pipeline

• Spark used for HEP data preparation at scale

• DL distributed training on cloud resources

• with TensorFlow on GPU + also tested with Spark on CPU

• Comput Softw Big Sci 4, 8 (2020) https://rdcu.be/b4Wk9
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Data and models 

from Research

Input: labeled

data and DL 

models

Feature 

engineering at 

scale

Distributed model 

training

Output: particle 

selector model
Hyperparameter

optimization 

(Random/Grid search)



Previous Work (Data Reduction) 
• CMS Bigdata project

• Data reduction at scale with Spark, up to 1 PB

• This focused on scaling out a simple computation/filter and running 

massive I/O in parallel https://doi.org/10.1051/epjconf/201921406030
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Runtime performance in minutes for different input sizes

Config: 100 Spark executors, 8 cores per Spark executor, 7 

GB per Spark executor. 

CPU: running on YARN. 

Storage: reading from EOS using Hadoop-XRootD connector



Lessons Learned and Wrap-up
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What Spark Can Offer to HEP
• Spark DataFrame API:

• Provide powerful abstractions and rich language(s)

• Both for data preparation and analysis

• Mature and an industry reference

• Can handle complex schemas

• Run DataFrame locally and at scale using distributed computing
• Runs on clusters and cloud (YARN/Hadoop, Kubernetes)

• HPC and batch: can run Spark stand-alone (requires extra integration work)

• Integration with a large ecosystem
• Can use for many file formats: Parquet, csv, ROOT, …

• Storage systems: HDFS, S3, EOS, ...

• External systems: databases, elastic search, streaming, etc 30



To Improve: Performance Gap
• Apache Spark Performance

• Identified several areas of improvement for Apache Spark (3.2) 

• Python UDF performance
• Sending data to Python workers has been improved but still slow

• Spark functions
• Higher order functions performance need improvements

• More array functions and functions for Lorentz vector processing?

• Spark engine
• Apache Spark does not (yet) have vectorized execution

• State-of-the-art HEP tools have large parts running native code vs. Spark is 
currently mostly Scala and Java running on the JVM (JIT compiled).
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Open Questions: Data Formats
• ROOT data format ingestion is not optimized for Spark

• It’s a hard job with limited resources

• Kudos to Andrew for Laurelin library + uproot team

• Apache Parquet and ORC 
• Optimized reader for Spark, supported by a large community

• The flatter the data the better
• Data in nanoAOD format already much easier to process with 

Spark than deeply nested AOD
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Plans and Future Work
• Gather feedback

• Develop further examples and benchmarks

• Trailing on work done with Coffea/awkward array and with 

ROOT/RDataFrame

• Piggyback on Apache Spark improvements

• Spark is still improving quite fast

• Work with community (HEP and Spark)

• We noticed some interest by Apache Spark committers on understanding 

HEP use cases

• Occasionally work together, as in the case of arrow UDF, also currently 

open SPARK-34265 and SPARK-38098

• Some physicists also interested in trying out Spark ? 33

https://issues.apache.org/jira/browse/SPARK-34265
http://issues.apache.org/jira/browse/SPARK-38098
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