
Apache Spark 2.0 Performance

Improvements Investigated With

Flame Graphs

Luca Canali

CERN, Geneva (CH)

Speaker Intro

• Database engineer and team lead at CERN IT

– Hadoop and Spark service

– Database services

• Joined CERN in 2005

• 16 years of experience with database services

– Performance, instrumentation, tools, Linux

• @LucaCanaliDB – http://cern.ch/canali

CERN

• CERN - European Laboratory for

Particle Physics

• Founded in 1954 by 12 countries for

fundamental research in physics

• Today 22 member states + world-wide

collaborations

• About ~1000 MCHF yearly budget

• 2’300 CERN personnel, 10’000 users

from 110 countries

Large Hadron Collider

• Largest and most powerful particle accelerator

LHC Physics and Data

• LHC physics is data- and compute- intensive

– Oct 2016: ~160 PB archive on tape at CERN

• Current rate of data acquisition: ~ 50 PB/year

– Distributed computing effort (WLCG)

• Computing: utilize ~ 300K cores

– Technology

• Custom data formats, applications and frameworks: ROOT

Apache Spark @ CERN

• Spark is a key component of the CERN Hadoop
Service
– Three production Hadoop/YARN clusters

• Aggregated capacity: ~1000 cores, 3 TB RAM, 1.2 PB used space
on HDFS

– Projects involving Spark:

• Analytics for accelerator controls and logging

• Monitoring use cases, this includes use of Spark streaming

• Analytics on aggregated logs

• Explorations on the use of Spark for physics analysis

A Case from Production

• Slow query in a relational database
– Ad-hoc report for network experts

– Query runs in >12 hours, CPU-bound, single-
threaded

• Run using Spark on a Hadoop cluster
– Data exported with Apache Sqoop to HDFS

– The now query runs in ~20 minutes, unchanged

– Throw hardware to solve the problem -> cost effective

Spark 1.6 vs. Spark 2.0

• Additional tests using Spark 2.0

– The query execution time goes down further

• One order of magnitude: from 20 min to 2 min

– How to explain this?

• Optimizations in Spark 2.0 for CPU-intensive workloads

• Whole stage code generation, vector operations

Main Takeaways

• Spark SQL

– Provides parallelism, affordable at scale

– Scale out on storage for big data volumes

– Scale out on CPU for memory-intensive queries

– Offloading reports from RDBMS becomes attractive

• Spark 2.0 optimizations

– Considerable speedup of CPU-intensive queries

Root Cause Analysis

• Active benchmarking

– Run the workload and measure it with the relevant

diagnostic tools

– Goals: understand the bottleneck(s) and find root

causes

– Limitations:

• Our tools, ability to run and understand them and time

available for analysis are limiting factors

Test Case 1/2

• Preparation of source data:

– Generate a DataFrame with 10M rows, and three columns

randomly generated

– Cache it in memory and register it as a temporary table

$ pyspark --driver-memory 2g

sqlContext.range(0, 1e7,1).registerTempTable("t0")

sqlContext.sql("select id, floor(200*rand()) bucket, floor(1000*rand())

val1, floor(10*rand()) val2 from t0").cache().registerTempTable("t1")

Test Case 2/2

• Test SQL:

– Complex and resource-intensive select statement

• With non-equijoin predicate and aggregations

sqlContext.sql("""

select a.bucket, sum(a.val2) tot

from t1 a, t1 b

where a.bucket=b.bucket

and a.val1+b.val1<1000

group by a.bucket order by a.bucket""").show()

Execution Plan

• The execution plan:

– First instrumentation point for SQL tuning

– Shows how Spark wants to execute the query

• Main players:

– Catalyst, the optimizer

– Tungsten the execution engine

Execution Plan in Spark 1.6

• Note: Sort Merge Join and In Memory Scan

Execution Plan in Spark 2.0

• Note: steps marked with (*) -> Code generation

Web UI: plan

comparison

Note in Spark 2.0

steps with “Whole

Stage CodeGen”

Additional Checks at OS Level

• Observation: the test workload is CPU-bound
– OS tools confirm this

– Spark used in local mode
• One multi-threaded java process

• Takes all available CPU resources in the machine

• Specs of the machine for testing:
– 16 cores (2 x E5-2650) and 128 GB of RAM (virtual

memory allocated ~ 16 GB)

Profiling CPU-Bound Workloads

• Flame graph visualization of stack profiles

– Brain child of Brendan Gregg (Dec 2011)

– Code: https://github.com/brendangregg/FlameGraph

– Now very popular, available for many languages, also

for JVM

• Shows which parts of the code are hot

– Very useful to understand where CPU cycles are spent

JVM and Stack Profiling

• Jstack <pid>

– Prints java stack for all threads

– What you want is a series of stack traces

• Java Flight Recorder

– Part of the HotSpot JVM (requires license for prod)

• Linux Perf

– Stack sampling of Java and OS

Flame Graph Visualization

• Recipe:

– Gather multiple stack traces

– Aggregate them by sorting alphabetically by function/method name

– Visualization using stacked colored boxes

– Length of the box proportional to time spent there

F1 F1 F1 F1

F2 F4 F4

F3

Function F1

Function F4F2

F3

Sort and merge

stack samples into

a flame graph

Flame Graph Spark 1.6

Spark CodeGen vs. Volcano

• Code generation improves CPU-intensive workloads
– Replaces loops and virtual function calls (volcano model)

with code generated for the query

– The use of vector operations (e.g. SIMD) also beneficial

– Codegen is crucial for modern in-memory DBs

• Commercial RDBMS engines
– Typically use the slower volcano model (with loops and

virtual function calls)

– In the past optimizing for I/O latency was more important,
now CPU cycles matter more

Flame Graph Spark 2.0

How-To: Flame Graph 1/2

• Enable Java Flight Recorder

– Extra options in spark-defaults.conf or CLI. Example:

• Collect data with jcmd.
• Example, sampling for 10 sec:

$ pyspark --conf "spark.driver.extraJavaOptions"="-XX:+UnlockCommercialFeatures -

XX:+FlightRecorder" --conf "spark.executor.extraJavaOptions"="-XX:+UnlockCommercialFeatures
-XX:+FlightRecorder"

$ jcmd <pid> JFR.start duration=10s filename=$PWD/myoutput.jfr

How-To: Flame Graph 2/2

• Process the jfr file:
– From .jfr to merged stacks

– Produce the .svg file with the flame graph

• Find details in Kay Ousterhout’s article:
– https://gist.github.com/kayousterhout/7008a8ebf2bab

eedc7ce6f8723fd1bf4

$ jfr-flame-graph/run.sh -f myoutput.jfr -o myoutput.txt

$ FlameGraph/flamegraph.pl myoutput.txt > myflamegraph.svg

Linux Perf Sampling 1/2

• Java mixed-mode flame graphs with Linux Perf_events
– Profiles CPU cycles spent on JVM and outside (e.g. Kernel)

• Additional complexity to work around Java-specific dtails

– Additional options for JVM are needed

• Issue with preserving frame pointers

• Fixed in Java8 update 60 build 19 or higher

• Another issue is with inlined functions:

– fixed adding option: -XX:MaxInlineSize=0

$ pyspark --conf "spark.driver.extraJavaOptions"="-XX:+PreserveFramePointer” --conf
"spark.executor.extraJavaOptions"= "="-XX:+PreserveFramePointer”

Linux Perf Sampling 2/2

• Collect stack samples with perf:

• Additional step: dump symbols. See

– https://github.com/jrudolph/perf-map-agent

– https://github.com/brendangregg/Misc/blob/master/java/jmaps

• Create flame graph from stack samples:

perf record –F 99 –g –a –p <pid> sleep 10

$ perf script > myoutput.txt

$./stackcollapse-perf.pl myoutput.txt | ./flamegraph.pl --color=java --hash > myoutput.svg

HProfiler

• Hprofiler is a home-built tool
– Automates collection and aggregation of stack traces into flame

graphs for distributed applications

– Integrates with YARN to identify the processes to trace across
the cluster

– Based on Linux perf_events stack sampling

• Experimental tool
– Author Joeri Hermans @ CERN

– https://github.com/cerndb/Hadoop-Profiler

– https://db-blog.web.cern.ch/blog/joeri-hermans/2016-04-hadoop-
performance-troubleshooting-stack-tracing-introduction

Recap on Flame Graphs

• Pros: good to understand where CPU cycles are spent
– Useful for performance troubleshooting and internals investigations

– Functions at the top of the graph are the ones using CPU

– Parent methods/functions provide context

• Limitations:
– Off-CPU and wait time not charted

• Off-CPU flame graphs exist, but still experimental

– Aggregation at the function/method level
• Does not necessarily highlight the critical path in the code

– Interpretation of flame graphs requires experience/knowledge

Further Drill Down, the Source Code

• Further drill down on the source code

– Search on Github for the method names as found in

the flame graph

– Examples:

• "org.apache.sql.execution.WholeStageCodegenExec“

• "org.apache.spark.sql.executio.aggregate.VectorizedHashM

apGenerator.scala"

https://github.com/apache/spark/blob/branch-2.0/sql/core/src/main/scala/org/apache/spark/sql/execution/WholeStageCodegenExec.scala
https://github.com/apache/spark/blob/branch-2.0/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/VectorizedHashMapGenerator.scala

Linux Perf Stat

• Perf stat counters to further understand

– Access to memory is key

– Much higher memory throughput in Spark 2.0 vs 1.6

• See LLC-LOAD, LLC-load-misses

perf stat -e task-clock,cycles,instructions,branches,branch-misses \

-e stalled-cycles-frontend,stalled-cycles-backend \

-e cache-references,cache-misses \

-e LLC-loads,LLC-load-misses,LLC-stores,LLC-store-misses \

-e L1-dcache-loads,L1-dcache-load-misses,L1-dcache-stores,L1-dcache-store-misses \
-p <pid_spark_process> sleep 100

Conclusions

• Apache Spark
– Scalability and performance on commodity HW

– For I/O intensive and compute-intensive queries

– Spark SQL useful for offloading queries from RDBMS

• Spark 2.0, code generation and vector operations
– Important improvements for CPU-bound workloads

– Speedup close to one order of magnitude
• Spark 2.0 vs. Spark 1.6 for the tested workload

– Diagnostic tools and instrumentation are important:
• Execution plans, Linux perf events, flame graphs

Acknowledgements and Links

• This work has been made possible thanks to the

colleagues at CERN IT and Hadoop service

– In particular Zbigniew Baranowski and Joeri Hermans

– See also blog - http://db-blog.web.cern.ch/

• Brendan Gregg – Resources on flame graphs:

– http://www.brendangregg.com/flamegraphs.html

http://db-blog.web.cern.ch/
http://www.brendangregg.com/flamegraphs.html

THANK YOU.

Contact: Luca.Canali@cern.ch

