
Monitor Apache Spark 3
on Kubernetes using
Metrics and Plugins
Luca Canali

Data Engineer, CERN

About Luca

• Data Engineer at CERN

• Data analytics and Spark service, database services

• 20+ years with databases and data engineering

• Passionate about performance engineering

• Repos, blogs, presentations

• @LucaCanaliDB
https://github.com/lucacanali
http://cern.ch/canali

Agenda

 Apache Spark monitoring:
ecosystem and motivations

 Spark metrics system

 Spark 3 plugins

 Metrics for Spark on K8S
and cloud storage

 How you can run a Spark
performance dashboard

Performance Troubleshooting Goals

• The key to good performance:
• You run good execution plans

• There are no serialization points

• Without these all bets are off!

• Attribution: I first heard this from Andrew Holdsworth (context: Oracle DB performance discussion ~2007)

• Spark users care about performance at scale
• Investigate execution plans and bottlenecks in the workload

• Useful tools are the Spark Web UI and metrics instrumentation!

Apache Spark Monitoring Ecosystem

• Web UI
• Details on jobs, stages, tasks, SQL, streaming, etc

• Default URL: http://driver:4040

• https://spark.apache.org/docs/latest/web-ui.html

• Spark REST API + Spark Listener @Developer API
• Exposes task metrics and executor metrics

• https://spark.apache.org/docs/latest/monitoring.html

• Spark Metrics System
• Implemented using the Dropwizard metrics library

Spark Metrics System

• Many metrics instrument Spark workloads:
• https://spark.apache.org/docs/latest/monitoring.html#metrics

• Metrics are emitted from the driver, executors and other Spark components

into sinks (several sinks available)

• Example of metrics: number of active tasks, jobs/stages completed and failed,

executor CPU used, executor run time, garbage collection time, shuffle metrics,

I/O metrics, metrics with memory usage details, etc.

Explore Spark Metrics

• Web UI Servlet Sink
• Metrics from the driver + executor (executor metrics available only if Spark is in local mode)

• By default: metrics are exposed using the metrics servlet on the WebUI

http://driver_host:4040/metrics/json

• Prometheus sink for the driver and for spark standalone, exposes metrics on the Web UI too

• *.sink.prometheusServlet.class=org.apache.spark.metrics.sink.PrometheusServlet

• *.sink.prometheusServlet.path=/metrics/prometheus

• Jmx Sink
• Use jmx sink and explore metrics using jconsole

• Configuration: *.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink

http://driver_host:4040/metrics/json

Spark Metrics System and Monitoring Pipeline

How to Use Spark Metrics – Sink to InfluxDB

• Edit $SPARK_HOME/conf/metrics.properties

• Alternative: use the config parameters spark.metrics.conf.*

• Use this method if running on K8S on Spark version 2.x or 3.0, see also SPARK-30985

cat $SPARK_HOME/conf/metrics.properties

*.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"

*.sink.graphite.host"="<graphiteEndPoint_influxDB_hostName>"

*.sink.graphite.port"=<graphite_listening_port>

*.sink.graphite.period"=10

*.sink.graphite.unit"=seconds

*.sink.graphite.prefix"="lucatest"

*.source.jvm.class"="org.apache.spark.metrics.source.JvmSource"

$SPARK_HOME/bin/spark-shell \

--conf "spark.metrics.conf.*.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink“ \

--conf "spark.metrics.conf.*.sink.graphite.host"="<graphiteEndPoint_influxDB_hostName>" \

..etc..

https://issues.apache.org/jira/browse/SPARK-30985

Metrics Visualization with Grafana

• Metrics visualized as time series
• Metrics values visualized vs. time and detailed per executor

Number of Active Tasks Executor JVM CPU Usage

Metrics for Spark on Kubernetes

• Spark on Kubernetes is GA since Spark 3.1.1
• Running Spark on cloud resources is widely used

• Need for improved instrumentation in Spark

• Spark 3 metrics system can be extended with plugins
• Plugin metrics to monitor K8S pods’ resources usage (CPU, memory, network,

etc)

• Plugin instrumentation for cloud filesystems: S3A, GS, WASBS, OCI, CERN’s

EOS, etc)

Spark Plugins and
Custom Extensions to the Metrics System

• Plugin interface introduced in Spark 3
• Plugins are user-provided code run at the start of the executors (and of the driver)

• Plugins allow to extend Spark metrics with custom code and instrumentation

A First Look at the Spark Plugins API

• Code snippets for demonstration
• A Spark Plugin implementing a metric that reports the constant value 42

Spark 3.x Plugin API

metricRegistry allows to register user-provided

sources with Spark Metrics System

‘Kick the Tires’ of Spark Plugins

▪ From https://github.com/cerndb/SparkPlugins

▪ RunOSCommandPlugin - runs an OS command as the executor starts

▪ DemoMetricsPlugin - shows how to integrate with Spark Metrics

bin/spark-shell --master k8s://https://<K8S URL> \

• --packages ch.cern.sparkmeasure:spark-plugins_2.12:0.1 \

• --conf spark.plugins=ch.cern.RunOSCommandPlugin,\

• ch.cern.DemoMetricsPlugin

https://github.com/cerndb/SparkPlugins

Plugins for Spark on Kubernetes

• Measure metrics related to pods’ resources usage
• Integrated with rest of Spark metrics

• Plugin code implemented using cgroup instrumentation

• Example: measure CPU from /sys/fs/cgroup/cpuacct/cpuacct.usage

bin/spark-shell --master k8s://https://<K8S URL> \

--packages ch.cern.sparkmeasure:spark-plugins_2.12:0.1 \

--conf spark.kubernetes.container.image=<registry>/spark:v311 \

--conf spark.plugins=ch.cern.CgroupMetrics \

...

CgroupMetrics Plugin

▪ Metrics (gauges), in ch.cern.CgroupMetrics plugin:

▪ CPUTimeNanosec: CPU time used by the processes in the cgroup

▪ this includes CPU used by Python processes (PySpark UDF)

▪ MemoryRss: number of bytes of anonymous and swap cache memory.

▪ MemorySwap: number of bytes of swap usage.

▪ MemoryCache: number of bytes of page cache memory.

▪ NetworkBytesIn: network traffic inbound.

▪ NetworkBytesOut: network traffic outbound.

Plugin to Measure Cloud Filesystems

▪ Example of how to measure S3 throughput metrics
▪ Note: Apache Spark instruments only HDFS and local filesystem

▪ Plugins uses Hadoop client API for Hadoop Compatible filesystems

▪ Metrics: bytesRead, bytesWritten, readOps, writeOps

--conf spark.plugins=ch.cern.CloudFSMetrics

--conf spark.cernSparkPlugin.cloudFsName=<name of the filesystem>

(example: "s3a", "gs", "wasbs", "oci", "root", etc.)

• Code and examples to get started:
• https://github.com/cerndb/spark-dashboard

• It simplifies the configuration of InfluxDB as a sink for Spark metrics

• Grafana dashboards with pre-built panels, graphs, and queries

• Option 1: Dockerfile
• Use this for testing locally

• From dockerhub: lucacanali/spark-dashboard:v01

• Option 2: Helm Chart
• Use for testing on Kubernetes

Tooling for a Spark Performance Dashboard

https://github.com/cerndb/spark-dashboard

Tooling for Spark Plugins

• Code and examples to get started:
• https://github.com/cerndb/SparkPlugins

• --packages ch.cern.sparkmeasure:spark-plugins_2.12:0.1

• Plugins for OS metrics (Spark on K8S)
• --conf spark.plugins=ch.cern.CgroupMetrics

• Plugins for measuring cloud storage
• Hadoop Compatible Filesystems: s3a, gs, wasbs, oci, root, etc..

• --conf spark.plugins=ch.cern.CloudFSMetrics

• --conf spark.cernSparkPlugin.cloudFsName=<filesystem name>

https://github.com/cerndb/SparkPlugins

How to Deploy the Dashboard - Example

docker run --network=host -d lucacanali/spark-dashboard:v01

INFLUXDB_ENDPOINT=`hostname`

bin/spark-shell --master k8s://https://<K8S URL> \

• --packages ch.cern.sparkmeasure:spark-plugins_2.12:0.1 \

• --conf spark.plugins=ch.cern.CgroupMetrics \

• --conf "spark.metrics.conf.*.sink.graphite.class"=

• "org.apache.spark.metrics.sink.GraphiteSink" \

• --conf "spark.metrics.conf.*.sink.graphite.host"=$INFLUXDB_ENDPOINT \

• --conf "spark.metrics.conf.*.sink.graphite.port"=2003 \

• --conf "spark.metrics.conf.*.sink.graphite.period"=10 \

• --conf "spark.metrics.conf.*.sink.graphite.unit"=seconds \

• --conf "spark.metrics.conf.*.sink.graphite.prefix"="luca“ \

• --conf spark.metrics.appStatusSource.enabled=true

...

Spark Performance Dashboard

• Visualize Spark metrics
• Real-time + historical data

• Summaries and time series of key metrics

• Data for root-cause analysis

Dashboard Annotations

• Annotations to the workload graphs with:

• Start/end time for job id, or stage id, or SQL id

Dashboard Annotations

• Annotations to the workload graphs with:

• Start/end time for job id, or stage id, or SQL id

INFLUXDB_HTTP_ENDPOINT="http://`hostname`:8086"

--packages ch.cern.sparkmeasure:spark-measure_2.12:0.17 \

--conf spark.sparkmeasure.influxdbURL=$INFLUXDB_HTTP_ENDPOINT \

--conf spark.extraListeners=ch.cern.sparkmeasure.InfluxDBSink \

Demo – Spark Performance Dashboard
(5 min)

Use Plugins to Instrument Custom Libraries

• Augment Spark metrics with metrics from custom code

• Example: experimental way to measure I/O time with metrics

• Measure read time, seek time and CPU time during read operations for HDFS, S3A, etc.

▪ Custom S3A jar with time instrumentation (for Hadoop 3.2.0, use with Spark 3.0 and 3.1):
https://github.com/LucaCanali/hadoop/tree/s3aAndHDFSTimeInstrumentation

▪ Metrics: S3AReadTimeMuSec, S3ASeekTimeMuSec, S3AGetObjectMetadataMuSec

▪ Spark metrics with custom Spark plugin:

▪ --packages ch.cern.sparkmeasure:spark-plugins_2.12:0.1

▪ --conf spark.plugins=ch.cern.experimental.S3ATimeInstrumentation

https://github.com/LucaCanali/hadoop/tree/s3aAndHDFSTimeInstrumentation

Lessons Learned and Further Work

▪ Feedback on deploying the dashboard @CERN

▪ We provide the Spark dashboard as an optional configuration for the CERN
Jupyter-based data analysis platform

▪ Cognitive load to understand the available metrics and troubleshooting process

▪ We set data retention and in general pay attention not to overload InfluxDB

▪ Core Spark development

▪ A native InfluxDB sink would be useful (currently Spark has a Graphite sink)

▪ Spark is not yet fully instrumented, a few areas yet to cover, for example
instrumentation of I/O time and Python UDF run time.

Conclusions

▪ Spark metrics and dashboard

▪ Provide extensive performance monitoring data. Complement the Web UI.

▪ Spark plugins

▪ Introduced in Spark 3.0, make it easy to augment the Spark metrics system.

▪ Use plugins to monitor Spark on Kubernetes and cloud filesystem usage.

▪ Tooling

▪ Get started with a dashboard based on InfluxDB and Grafana.

▪ Build your plugins and dashboards, and share your experience!

Acknowledgments and Links

▪ Thanks to CERN data analytics and Spark service team

▪ Thanks to Apache Spark committers and Spark community

▪ For their help with PRs: SPARK-22190, SPARK-25170, SPARK-25228, SPARK-
26928, SPARK-27189, SPARK-28091, SPARK-29654, SPARK-30041, SPARK-
30775, SPARK-31711

▪ Links:
• https://github.com/cerndb/SparkPlugins

• https://github.com/cerndb/spark-dashboard

• https://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-
apache-spark

• https://github.com/LucaCanali/sparkMeasure

https://github.com/cerndb/SparkPlugins
https://github.com/cerndb/spark-dashboard
https://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-apache-spark
https://github.com/LucaCanali/sparkMeasure

