Monitor Apache Spark 3
on Kubernetes using
Metrics and Plugins

Luca Canali
Data Engineer, CERN

About Luca

- Data Engineer at CERN
- Data analytics and Spark service, database services
- 20+ years with databases and data engineering
- Passionate about performance engineering

- Repos, blogs, presentations

y @LucaCanaliDB
() https://github.com/lucacanali
http://cern.ch/canall

Agenda

= Apache Spark monitoring:
ecosystem and motivations

« Spark metrics system
= Spark 3 plugins

= Metrics for Spark on K8S
and cloud storage

« How you can run a Spark
performance dashboard

Performance Troubleshooting Goals
- The key to good performance:

- You run good execution plans
- There are no serialization points
- Without these all bets are off!

- Attribution: | first heard this from Andrew Holdsworth (context: Oracle DB performance discussion ~2007)

- Spark users care about performance at scale

- Investigate execution plans and bottlenecks in the workload
- Useful tools are the Spark Web Ul and metrics instrumentation!

Apache Spark Monitoring Ecosystem

- Web Ul

* Detalls on jobs, stages, tasks, SQL, streaming, etc
* Default URL: http://driver:4040
* https://spark.apache.org/docs/latest/web-ui.html

- Spark REST API + Spark Listener @Developer AP

- EXposes task metrics and executor metrics
- https://spark.apache.org/docs/latest/monitoring.html

- Spark Metrics System

- Implemented using the Dropwizard metrics library

Spark Metrics System

- Many metrics instrument Spark workloads:

- https://spark.apache.org/docs/latest/monitoring.html#metrics

- Metrics are emitted from the driver, executors and other Spark components
Into sinks (several sinks available)

- Example of metrics: number of active tasks, jobs/stages completed and failed,
executor CPU used, executor run time, garbage collection time, shuffle metrics,
I/O metrics, metrics with memory usage details, etc.

Explore Spark Metrics

- Web Ul Servlet Sink

- Metrics from the driver + executor (executor metrics available only if Spark is in local mode)

- By default: metrics are exposed using the metrics servlet on the WebUI
http://driver _host:4040/metrics/[son

- Prometheus sink for the driver and for spark standalone, exposes metrics on the Web Ul too

- *sink.prometheusServlet.class=org.apache.spark.metrics.sink.PrometheusServlet
- *.sink.prometheusServlet.path=/metrics/prometheus

- Jmx Sink

- Use jmx sink and explore metrics using jconsole

- Configuration: *.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink

http://driver_host:4040/metrics/json

Spark Metrics System and Monitoring Pipeline

Apache Spark Metrics System + InfluxDB + Grafana => Dashboard

Source: Spark components instrumented Sink: collect and store Visualize: using Grafana
with dropwizard library metrics the metrics using InfluxDB dashboards

\\

/ \ - /Available sink endpnints:\ (
Spor E ST _,(Graphlte)+ @ —~+—1. 15 Grafana

- - Dashboard:
,/Instrumented nnmponenh - "'" Cnnsnle queries pull data
- driver ke - d - IMX InfluxDB
Driver s] from InfluxDB
- executors e - MetricsServiet
- applicationMaster [\'ARN] / -slfa \ /
= shuffleService ”

- StatsD

| Components \ /

send metrics

- mesos_cluster
- master
-worker

- applications updates to

L =JVM J
& i / the sink

How to Use Spark Metrics — Sink to InfluxDB |,

- Edit $SPARK _HOME/conf/metrics.properties

cat SSPARK HOME/conf/metrics.properties

*.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink"
.sink.graphite.host"="<graphiteEndPoint influxDB hostName>"
.sink.graphite.port"=<graphite listening port>
.sink.graphite.period"=10
.sink.graphite.unit"=seconds
.sink.graphite.prefix"="lucatest"

.source.jvm.class"="org.apache.spark.metrics.source.JvmSource"

- Alternative: use the config parameters spark.metrics.conf.*
- Use this method if running on K8S on Spark version 2.x or 3.0, see also SPARK-30985

$SSPARK HOME/bin/spark-shell \

--conf "spark.metrics.conf.*.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink™ \

—-—conf "spark.metrics.conf.*.sink.graphite.host"="<graphiteEndPoint influxDB hostName>" \

.etc..

https://issues.apache.org/jira/browse/SPARK-30985

Metrics Visualization with Grafana

- Metrics visualized as time series

- Metrics values visualized vs. time and detailed per executor

Number of Active Tasks Executor JVM CPU Usage

Mumber of Active Tasks Executors JVM CPU Utilization (N# cores-equivalent)

N# Active Tasks

—
=
-
2
©
=
5
o
o
"
]
L
Q
o
*
-
<
c
[}
=
o
N
E
=o_
e
Q.
o

- s [-
LAY “ e~ "D AT

A 1A n v Y N
. ¥ ey \ 4 9 .
18:51 18:52 18:53 1854 18:55 18:56 18:57 18:58 18:59 15:00 18:50 18:51 18:52 18:53 18:54 18:55 18:56 18:57 18:58 18:59
== M# active tasks - Executor 1 == M# active tasks - Executor 10 == N# active tasks - Executor 11 == M# active tasks - Executor 12 == JVMCPU-Executor 1 == JVM CPU-Executor 10 == JVM CPU-Executor 11 == JVM CPU - Executor 12

MN# active tasks - Executor 2 M# active tasks - Executor 3 N# active tasks - Executor 4 MN# active tasks - Executor 5 JVM CPU - Executor 2 JVM CPU - Executor 3 JVM CPU - Executor 4 JVM CPU - Executor 5
M# active tasks - Executor 6 == N# active tasks - Executor 7 MN# active tasks - Executor 8 M# active tasks - Executor 9 JVM CPU-Executor 6 == JVM CPU - Executor 7 JVYM CPU - Executor 8 JVM CPU - Executor 9

Metrics for Spark on Kubernetes

- Spark on Kubernetes is GA since Spark 3.1.1

- Running Spark on cloud resources is widely used
- Need for improved instrumentation in Spark

- Spark 3 metrics system can be extended with plugins

- Plugin metrics to monitor K8S pods’ resources usage (CPU, memory, network,
etc)

- Plugin instrumentation for cloud filesystems: S3A, GS, WASBS, OCI, CERN'’s
EOS, etc)

Spark Plugins and
Custom Extensions to the Metrics System

- Plugin interface introduced in Spark 3

- Plugins are user-provided code run at the start of the executors (and of the driver)
- Plugins allow to extend Spark metrics with custom code and instrumentation

JVM
Spor‘lhé -

Package Executor — Metrics

/ Sink
. . . u
Extra metrics join the

Spark metrics stream

Plugin registers extra
metrics using package
API

A First Look at the Spark Plugins API

- Code snippets for demonstration
- A Spark Plugin implementing a metric that reports the constant value 42

import com.codahale.metrics.{Gavge, MetricRegistry}

import org.apache.spark.api.plegin.{DriverPlugin, ExecutorPlugin, PluginContext, SparkPlugin} ‘ Spark 3X Plug|n API

import org.apache.spark.SparkContext

class DemoMetricsPlugin extends SparkPlugin {

metricReqistry allows to register user-provided
override def :—:-x:—:-cu{:oPF'lugin(]: ExecutorPlugin = { sources Wlth Spark MetrICS SyStem
new ExecutorPlugin {
override def init({myContext:PluginContext, extrafonf:IMaplsString, Stringl): Unit = {

I o1y C —
rauge yorr TesT1

val metricRegistry =(myContext.metricRegistr
metricRegistry.register(MeTr ~name{ name = "ExecutorTest42"), new Gauvge[Int] {

override def getValue: Int = 42
H)

'Kick the Tires’ of Spark Plugins

. From https://github.com/cerndb/SparkPlugins

- RunOSCommandPlugin - runs an OS command as the executor starts

- DemoMetricsPlugin - shows how to integrate with Spark Metrics

bin/spark-shell --master k8s://https://<K8S URL> \

——packages ch.cern.sparkmeasure:

-—conf =ch.cern.RunOSCommandPlugin, \

ch.cern.DemoMetricsPlugin

https://github.com/cerndb/SparkPlugins

Plugins for Spark on Kubernetes

- Measure metrics related to pods’ resources usage
- Integrated with rest of Spark metrics

- Plugin code implemented using cgroup instrumentation
- Example: measure CPU from /sys/fs/cgroup/cpuacct/cpuacct.usage

bin/spark-shell --master k8s://https://<K8S URL> \
——packages ch.cern.sparkmeasure: :0.1 \

-—-conf spark.kubernetes.container.image=<registry>/spark:v311 \
--conf spark.plugins= \\

CgroupMetrics Plugin

. Metrics (gauges), in ch.cern.CgroupMetrics plugin:

- CPUTiIimeNanosec: CPU time used by the processes in the cgroup

- this includes CPU used by Python processes (PySpark UDF)
- MemoryRss: number of bytes of anonymous and swap cache memory.

- MemorySwap: number of bytes of swap usage.
- MemoryCache: number of bytes of page cache memory.
- NetworkBytesIn: network traffic inbound.

- NetworkBytesOut: network traffic outbound.

Plugin to Measure Cloud Filesystems

. Example of how to measure S3 throughput metrics

- Note: Apache Spark instruments only HDFS and local filesystem
- Plugins uses Hadoop client API for Hadoop Compatible filesystems
- Metrics: bytesRead, bytesWritten, readOps, writeOps

—-—conf spark.plugins=

-—-conf spark.cernSparkPlugin. =<name of the filesystem>

(example: "s3a", "gs", "wasbs", "oci", "root", etc.)

Tooling for a Spark Performance Dashboard

- Code and examples to get started: o

- https://github.com/cerndb/spark-dashboard

- It simplifies the configuration of InfluxDB as a sink for Spark metrics
- Grafana dashboards with pre-built panels, graphs, and queries

- Option 1: Dockerfile gy

- Use this for testing locally
- From dockerhub: 1lucacanali/spark-dashboard:v01

- Option 2: Helm Chart hn?
NA

- Use for testing on Kubernetes

https://github.com/cerndb/spark-dashboard

Tooling for Spark Plugins
- Code and examples to get started: O

. https://github.com/cerndb/SparkPlugins

- ——packages ch.cern.sparkmeasure:spark-plugins 2.12:0.1

- Plugins for OS metrics (Spark on K8S)

- ——conf spark.plugins=ch.cern.CgroupMetrics

- Plugins for measuring cloud storage

- Hadoop Compatible Filesystems: s3a, gs, wasbs, ocli, root, etc..

- ——conf spark.plugins=ch.cern.CloudFSMetrics
- ——conf spark.cernSparkPlugin.cloudFsName=<filesystem name>

https://github.com/cerndb/SparkPlugins

How to Deploy the Dashboard - Example

docker run —-—-network=host -d
INFLUXDB_ENDPOINT= "hostname"

bin/spark-shell --master k8s://https://<K8S URL> \
—-—packages
—-—-conf \\
——-conf "spark.metrics.conf.*.sink.graphite.class"=
"org.apache.spark.metrics.sink.GraphiteSink" \
—-—conf "spark.metrics.conf.*.sink.graphite.host"=$INFLUXDB ENDPOINT \
—-—-conf "spark.metrics.conf.*.sink.graphite.port"=2003 \
—-—-conf "spark.metrics.conf.*.sink.graphite.period"=10 \
—-—conf "spark.metrics.conf.*.sink.graphite.unit"=seconds \
-—-conf "spark.metrics.conf.*.sink.graphite.prefix"="1luca"“ \

——-conf spark.metrics.appStatusSource.enabled=true

Executors JVM CPU Utilization (N# cores-equivalent)

Spark Performance Dashboard

i (W)

isualize Spark metrics AU SAABLL R Ul

== JVM CPU-Executor 1 == JVM CPU-Executor 10 == JVM CPU-Executor 11 == JVM CPU -Executor 12
JVM CPU - Executor 2 JVM CPU - Executor 3 JVM CPU - Executor 4 JVM CPU - Executor 5
JVM CPU - Executor 6 == JVM CPU - Executor 7 JVM CPU - Executor 8 JVM CPU - Executor 9

R e al -tl m e + h I Sto rl Ca.l d ata ~ Spark Executors Memory Metrics (Spark 3.0)

JVM On Heap Memory

CPU Utilization (N# cores equivalent)

Summaries and time series of key metrics

8
8
@
8

Data for root-cause analysis

JVM Heap Memory

88 General / Spark_Perf_Dashboard_v03 <y o

19:00 19:10 19:20 19:30 19:40 19:50 20:00

spa rk-a pplicat'lo n-1619699993126 ~ == JVM heap memory - Executor 1 == JVM heap memory - Executor 10 == JVM heap memory - Executor 11
== JVM heap memory - Executor 12 JVM heap memory - Executor 2 JVM heap memory - Executor 3

. JVM heap memory - Executor 4 JVM heap memory - Executor 5 JVM heap memory - Executor 6

¥ Summary metrics == JVM heap memory - Executor 7 JVM heap memory - Executor 8 JVM heap memory - Executor 9

luca ~
Task Run Time Executors CPU time Task CPU Usage Task GC Time N# of Completed Tasks Current N# of Running Stages... . i
Shuffle Bytes Written/sec - from taskmetrics

7.13day 4.85 day 4.66 day 45.5 min 380455 1

| i I T
i |j|'| iy ol o N bk SIMALL, e

Heap memory Used (% of ma... Bytes read Bytes written Succeeded Jobs Count Ni# of Failed Tasks Failed Stages

Shuffle bytes written/sec

1GB/s ‘. | | |
§ i H

' R 1 i M

AU L A AL AU

oB/s —L A ALK A.‘._M__ { Y a a
Ti B 19:00 1510 19:20 19:30 19:40 19:50 20:00
- shuffleBytesWritten - Executor 1 == shuffleBytesWritten - Executor 10 wm shuffleBytesWritten - Executor 11
shuffleBytesWritten - Executor 12 shuffleBytesWiritten - Executor 2 shuffleBytesWritten - Executor 3

5 4 /6 shuffleBytesWritten - Executor 4 shuffleBytesWritien - Execunor 5 shuffleByteswWritten - Executor 6
shuffleBytesWritten - Executor 7 shuffleBytesWritten - Executor 8 shuffleBytesWritten - Executor 9

Dashboard Annotations

- Annotations to the workload graphs with:
- Start/end time for job id, or stage id, or SQL id

Dashboard Annotations

- Annotations to the workload graphs with:
- Start/end time for job id, or stage id, or SQL id

OnHeap Execution Memory

INFLUXDB HTTP ENDPOINT="http:// hostname :8086"

\ : 'f:_"::.‘;:':;ir‘ e ‘~<‘_:>‘.X_; i~
e 1 620 | —-packages ch.cern.sparkmeasure:spark-measure 2.12:0.17 \

—-conf spark.sparkmeasure.influxdbURL=SINFLUXDB HTTP ENDPOINT \

--conf spark.extralisteners=ch.cern.sparkmeasure.InfluxDBSink \

Demo — Spark Performance Dashboard
(5 min)

Use Plugins to Instrument Custom Libraries

- Augment Spark metrics with metrics from custom code
- Example: experimental way to measure 1/O time with metrics

- Measure read time, seek time and CPU time during read operations for HDFS, S3A, etc.

= Custom S3A jar with time instrumentation (for Hadoop 3.2.0, use with Spark 3.0 and 3.1):
https://github.com/LucaCanali/hadoop/tree/s3aAndHDESTimelnstrumentation

= Metrics: S3AReadTimeMuSec, S3ASeekTimeMuSec, S3AGetObjectMetadataMuSec

= Spark metrics with custom Spark plugin:

--packages ch.cern.sparkmeasure:spark-plugins 2.12:0.1

--conf spark.plugins=ch.cern.experimental.S3ATimeInstrumentation

https://github.com/LucaCanali/hadoop/tree/s3aAndHDFSTimeInstrumentation

Lessons Learned and Further Work

. Feedback on deploying the dashboard @CERN

- We provide the Spark dashboard as an optional configuration for the CERN
Jupyter-based data analysis platform

- Cognitive load to understand the available metrics and troubleshooting process

- We set data retention and in general pay attention not to overload InfluxDB
. Core Spark development

- A native InfluxDB sink would be useful (currently Spark has a Graphite sink)

- Spark is not yet fully instrumented, a few areas yet to cover, for example
iInstrumentation of /O time and Python UDF run time.

Conclusions

. Spark metrics and dashboard

- Provide extensive performance monitoring data. Complement the Web UI.
. Spark plugins

- Introduced in Spark 3.0, make it easy to augment the Spark metrics system.

- Use plugins to monitor Spark on Kubernetes and cloud filesystem usage.

. Tooling

- Get started with a dashboard based on InfluxDB and Grafana.

- Build your plugins and dashboards, and share your experience!

Acknowledgments and Links

. Thanks to CERN data analytics and Spark service team

. Thanks to Apache Spark committers and Spark community

= For their help with PRs: SPARK-22190, SPARK-25170, SPARK-25228, SPARK-
26928, SPARK-27189, SPARK-28091, SPARK-29654, SPARK-30041, SPARK-
30775, SPARK-31711

- Links:
* https://github.com/cerndb/SparkPlugins

* https://github.com/cerndb/spark-dashboard

* https://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-
apache-spark

* https://github.com/LucaCanali/sparkMeasure

https://github.com/cerndb/SparkPlugins
https://github.com/cerndb/spark-dashboard
https://db-blog.web.cern.ch/blog/luca-canali/2019-02-performance-dashboard-apache-spark
https://github.com/LucaCanali/sparkMeasure

