Building an Apache Spark Performance Lab:
Tools and Techniques for Optimization

Luca Canali
CERN
April 2024

CE/RW
/)

About Luca

- Data Engineer at CERN

- Data analytics and Spark service, database services
« 20+ years with databases and data engineering

- Passionate about performance engineering

- Repos, blogs, presentations

y @LucaCanaliDB
() https://github.com/lucacanali
) ‘ http://cern.ch/canall

https://twitter.com/LucaCanaliDB
https://github.com/lucacanali
http://cern.ch/canali

Motivations and Scope

- Apache Spark is great at large-scale data processing
Distributed computing is hard
Getting optimal execution plans is hard

- Data-driven troubleshooting and tuning of Spark jobs
Beyond just measuring execution time
Collect and analyze Spark Metrics, Spark-Dashboard
Workload generator instrumented with sparkMeasure: TPCDS-PySpark

- Not a goal
A guide to Spark performance troubleshooting and tuning

CE/RW
\

N7

Build a Lab!

- The key idea of this presentation:

. Build a Spark Performance Lab

. Run Spark jobs at scale
Start small (GB) and scale to TBs

. Use instrumentation
Monitor the workload execution
Understand using data: use Spark metrics

Learn by running experiments: change
configuration, scale, SW version, HW, etc.

c_-m
\

Tools

1. Workload Generation
- Start by deploying TPCDS_PySpark.

« It's a workload generator that runs TPC-DS queries on Spark,

allowing for performance studies across different configurations
and Spark versions.

« Execute TPC-DS gqueries, a well-known suite of complex SOQL,
representative of many OLAP environments

« Run at scale, from local mode and a few GB to cluster and 10s of
TBs

« Collect and analyze Spark performance metrics thanks to the
Integration with sparkMeasure (see discussion on
sparkMeasure).

@) :

N7

TPCDS PySpark — getting started

Run this getting-started example from the command line:

Install the tool and dependencies
pip install pyspark

pip install sparkmeasure

pip install tpcds pyspark

Download the test data
wget

https://sparkdltrigger.web.cern.ch/sparkdltrigger/TPCDS/tpcds 10.zip

unzip -q tpcds_ 10.zip

1. Run the tool for a minimal test

tpcds pyspark run.py -d tpcds 10 -n 1 -r 1 --queries ql, g2

2. run all queries with default options

Cﬁ;y tpcds pyspark run.py -d tpcds 10

2. Explore: WebUI

- Spark WebUI is the official Spark instrumentation a
starting point for performance investigations. Use it to
explore the SQL, jobs, and configurations while the
workload is running.
https://spark.apache.org/docs/latest/web-ui.html

CE/RW
\

N7

https://spark.apache.org/docs/latest/web-ui.html

3. Detalled Analysis with

sparkMeasure
- For a more detailed analysis, integrate SparkMeasure into your
applications

- This tool is invaluable for identifying performance bottlenecks,
understanding resource utilization, and comparing different Spark
configurations or code changes.

- Modes of operation
Interactive use, analyze the metrics as you go. Use it with Notebooks or CLI.

Batch mode for post-execution analysis. Use it to instrument your code
and/or use it for CI/CD jobs.

Flight-recorder mode: collect metrics without any code change.

@
\ 9

7Y

SparkMeasure — getting started

Run these getting started examples from the command line:

Scala CLI

spark-shell --packages ch.cern.sparkmeasure:spark-measure 2.12:0.24

val stageMetrics = ch.cern.sparkmeasure.StageMetrics (spark)

stageMetrics.runAndMeasure (spark.sql ("select count(*) from range (1000)
cross join range (1000) cross join range (1000) ") .show())

Python CLI
pip install pyspark
pip install sparkmeasure

pyspark --packages ch.cern.sparkmeasure:spark-measure 2.12:0.24

from sparkmeasure import StageMetrics
stagemetrics = StageMetrics (spark)

stagemetrics.runandmeasure (globals (), 'spark.sql ("select count(*) from
range (1000) cross join range (1000) cross join range(1000)") .show() ')

arkMeasures’ architecture

Spark Listener Bus, Task Metrics, and SparkMeasure Architecture

4?ACHE& /
spor Spark Context/Session ’
| /

Standard Spark
Instrumentation

Spark
EventLog

Spark History

Schedule Tasks — \\/ Server
/ Spark Listener Bus
m - | Spark Web Ul
m Heartbeat (10s) - EventLogging Listener / | 1" Spark REST API
Send Task metrics - AppsStatus and other

Schedule Tasks

Heartbeat (10s)
Send Task metrics

Schedule Tasks

=l

Spark internal Listeners

ﬂ:ustom Spark Listener:
SparkMeasure

[StagelnfoRecorder]

SparkMeasure

Use cases and environments
Interactive:
Scala, Python,

[TaskinfoRecorder]

Heartbeat (10s)
Send Task metrics

)

FlightRecorder mode:
- Filesystem output

Jupyter notebook
Batch: code
intrumentaiton

Online monitoring,

- InfluxDB sink

- Apache Kafka sink

workload analysis

Metrics Output

f%‘@\

&
O

. J

11

4. Monitor execution with Spark-
Dashboard

Use Spark-Dashboard to monitor the Spark jobs execution Iin real
time.

This involves collecting metrics from your Spark jobs and visualizing
them with a Grafana dashboard.

The dashboard displays metric related to CPU usage, 1/0,
Shuffle, Memory usage.

Time-series to follow the evolution and find bottlenecks

The setup process is straightforward, thanks to pre-configured
Docker container images.

CERN

_/\/ 12

Spark-Dashboard’s architecture

Spark-Dashboard, a Monitoring Pipeline
Spark Metrics System + Telegraf + VictoriaMetrics + Grafana = Monitoring

1 (Telegraf) @
19 Grafana
Dashboards with metrics
and graphs read from
VictoriaMetrics using

@lctorlaMetncs vl \PromQL /
Dashboard: Grafana provides
/ the user interface

Sink: Telegraf collects and labels the

/sgs‘af“‘

l'r Spark Metrics:

= Run time

- CPU time

-GC time

= Memory usage
- Shuffle metrics
-1/0 metrics

N\

EE

L Vi

.

measurements
Source: Spark executors and driver emit metrics Time series DB: VictoriaMetrics stores
measurements directly to a sink the data

CE/RW
\

Spark-Dashboard — getting started

1. Start the container image
docker run -p 3000:3000 -p 2003:2003 -d lucacanali/spark-dashboard

2. Run Spark
bin/spark-shell (or spark-submit or pyspark)

--conf
--conf
--conf
--conf
--conf
--conf
--conf
--conf

--conf

"spark
"spark
"spark
"spark
"spark
"spark
"spark
"spark

"spark

.metrics

.metrics.
.metrics.
.metrics.
.metrics.
.metrics.
.metrics.
.metrics.

.metrics.

.conf.

conf.
conf.
conf.
conf.
conf.

conf.

*

*
*
*
*
*

*

.sink.
.sink.
.sink.
.sink.
.sink.

.sink.

graphite.

graphite
graphite
graphite
graphite
graphite

class"="org.apache.spark.metrics.sink.GraphiteSink" \

.host"="localhost" \
.port"=2003 \
.period"=10 \
.unit"=seconds \

.prefix"="1lucatest" \

.source.jvm.class"="org.apache.spark.metrics.source.JvmSource" \

staticSources.enabled"=true \

appStatusSource.enabled"=true

3. Go to the dashboard: http://localhost:3000

(@

Example Dashboard

Partial view of
the dashboard

éiy

= Home > Dashboards

luca v Spark Application Id

v Summary metrics

Task Run Time

970 days

Heap memory Used (% of n

N# of Active Tasks - latest

N/A

v Spark workload metrics

Number of Active Tasks

S * S5

application_1709030796221_6947 v

Executors CPU time

870 days

Bytes read

64.6 Tis

CPU Application Total - Exe

Task CPU Usage

814 days

Bytes written G

OB

N# Tasks Application Total

5623879

Task GC Time N# of Completed Tasks Current N# of Running Stac

MMLW&)AJMWA

Failed Stages |

21.5 18 8 0

Succeeded Jobs Count

13.7hours 5617544

Shuffle bytes written N# of Failed Tasks

8283

Executors JVM CPU Utilization (N# cores-equivalent)

Tutorials and Demos

Demos and tutorials of the tools for a Spark Performance Lab.

cw
\

Nf =,

SparkMeasure - metrics collection

. {3 Watch the video sparkMeasure's getting started demo and tutorial

TPCDS_PySpark - workload generator
o nWatch the video Watch TPCDS-PySpark demo and tutorial

Spark-Dashboard - real-time dashboards
- B Watch the video Spark-Dashboard demo and tutorial

16

https://www.youtube.com/watch?v=NEA1kkFcZWs
https://www.youtube.com/watch?v=1EjLCamuRl0
https://www.youtube.com/watch?v=sLjAyDwpg80
https://www.youtube.com/watch?v=NEA1kkFcZWs
https://www.youtube.com/watch?v=1EjLCamuRl0
https://www.youtube.com/watch?v=sLjAyDwpg80

Metrics Drill Down

- Metrics provide insights

They take us beyond simple timing, revealing details about
task execution, resource utilization, and bottlenecks.

- Execution Time i1s Not Enough

CE/RW
\

N7

Measuring the execution time of a job is useful but it doesn’t
show the whole picture.

Say the job ran in 10 seconds. It's crucial to understand why it
took 10 seconds instead of 100 seconds or just 1 second.
What was slowing things down? Was it the CPU, data
Input/output, or something else, like data shuffling?

This helps us identify the root causes of performance issues.

17

Make the Best of Spark Metrics

Documentation: Spark Task Metrics docs

Key Metrics to Collect and Monitor:
Executor Run Time: Total time executors spend processing tasks.
Executor CPU Time: Direct CPU time consumed by tasks.

JVM GC Time: Time spent in garbage collection, affecting
performance.

Shuffle and 1/O Metrics: Critical for understanding data movement
and disk interactions.

Memory Metrics: Key for performance and troubleshooting Out Of
Memory errors

) 18

N7

https://spark.apache.org/docs/latest/monitoring.html

Metric Analysis, What to Look For

- Look for bottlenecks:

« Are there resources that are the bottleneck? Are the jobs
running mostly on CPU or waiting for I/O or Garbage

Collection, or..?

- USE method:
« Utilization Saturation and Errors (USE) Method
It Is a methodology for analyzing the performance of any

system.
The tools described here can help you to measure and
understand Utilization and Saturation.

E/RW 19

https://www.brendangregg.com/usemethod.html

Cluster CPU Utilization

- Are you getting all allocated cores to work for you?
« Check the number of active tasks vs. time
« Figure: during TPCDS 10TB on a YARN cluster with 256 cores

« Spikes and troughs. Drill down on root cause:
Resource allocation, partition skew, straggler tasks, stage boundaries, etc

Number of Active Tasks

Which Tools Should | Use?

Start with using the Spark Web Ul

- Instrument your jobs with sparkMesure.

This is recommended early in the application development, testing, and
for Continuous Integration (CI) pipelines.

Observe your Spark application execution with Spark-Dashboard

Use OS-tools

See also Spark-Dashboard extended instrumentation: it collects and
visualizes OS metrics (from cgroup statistics) like network stats, etc

An example of “offline” Spark metrics analysis
TPCDS run at scale 10 TB

@) 2

Nf =,

https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/TPCDS_PySpark#tpcds-at-scale-10000g-and-analysis

| essons Learned

Collect, Analyze and Visualize Metrics: Go beyond just measuring jobs'
executions time, to troubleshoot and fine-tune Spark performance effectively.

Use the Right Tools: Familiarize yourself with tools for performance
measurement and monitoring.

Start Small, Scale Up: Begin with smaller datasets and configurations, then
gradually scale to test larger, more complex scenarios.

Tuning is an lterative Process: Experiment with different configurations,
parallelism levels, and data partitioning strategies to find the best setup for
your workload.

D) 2

N7

Conclusions

Establishing a Spark Performance Lab is a fundamental step for any
developer and data engineer aiming to master Spark's performance.

By integrating tools like Web Ul, TPCDS_PySpark, sparkMeasure, and
Spark-Dashboard, developers and data engineers can gain unprecedented
Insights into Spark operations and optimizations.

Learn by doing and experimentation!

CE/RW
\

o 23

Resources

Blog: Building an Apache Spark Performance Lab: Tools and
Technigues for Spark Optimization

TPCDS_PySpark

SparkMeasure

Spark-Dashboard and Dashboard Notes

Flame Graphs for Spark and Grafana Pyroscope with Spark
Tools for OS performance monitoring

Acknowledgements: the teams behind the CERN data analytics,
monitoring, and web notebook services, as well as the members of the

ATLAS database group.

i) 24

Nf =,

https://db-blog.web.cern.ch/node/195
https://db-blog.web.cern.ch/node/195
https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/TPCDS_PySpark
https://github.com/LucaCanali/sparkMeasure
https://github.com/cerndb/spark-dashboard
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Linux_FlameGraph.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Pyroscope_FlameGraph.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_OS_CPU_Disk_Network.md

	Slide 1
	Slide 2: About Luca
	Slide 3: Motivations and Scope
	Slide 4: Build a Lab!
	Slide 5: Tools
	Slide 6: 1. Workload Generation
	Slide 7: TPCDS_PySpark – getting started
	Slide 8: 2. Explore: WebUI
	Slide 9: 3. Detailed Analysis with sparkMeasure
	Slide 10: SparkMeasure – getting started
	Slide 11: SparkMeasures’ architecture
	Slide 12: 4. Monitor execution with Spark-Dashboard
	Slide 13: Spark-Dashboard’s architecture
	Slide 14: Spark-Dashboard – getting started
	Slide 15: Example Dashboard
	Slide 16: Tutorials and Demos
	Slide 17: Metrics Drill Down
	Slide 18: Make the Best of Spark Metrics
	Slide 19: Metric Analysis, What to Look For
	Slide 20: Cluster CPU Utilization
	Slide 21: Which Tools Should I Use?
	Slide 22: Lessons Learned
	Slide 23: Conclusions
	Slide 24: Resources

