
Building an Apache Spark Performance Lab:
Tools and Techniques for Optimization

Luca Canali
CERN
April 2024

1

About Luca
• Data Engineer at CERN

• Data analytics and Spark service, database services

• 20+ years with databases and data engineering

• Passionate about performance engineering

• Repos, blogs, presentations
 @LucaCanaliDB
 https://github.com/lucacanali
 http://cern.ch/canali

https://twitter.com/LucaCanaliDB
https://github.com/lucacanali
http://cern.ch/canali

Motivations and Scope
• Apache Spark is great at large-scale data processing

• Distributed computing is hard

• Getting optimal execution plans is hard

• Data-driven troubleshooting and tuning of Spark jobs

• Beyond just measuring execution time

• Collect and analyze Spark Metrics, Spark-Dashboard

• Workload generator instrumented with sparkMeasure: TPCDS-PySpark

• Not a goal

• A guide to Spark performance troubleshooting and tuning

3

Build a Lab!
• The key idea of this presentation:

• Build a Spark Performance Lab

• Run Spark jobs at scale

• Start small (GB) and scale to TBs

• Use instrumentation

• Monitor the workload execution

• Understand using data: use Spark metrics

• Learn by running experiments: change
configuration, scale, SW version, HW, etc.

4

Tools

5

1. Workload Generation
• Start by deploying TPCDS_PySpark.

• It's a workload generator that runs TPC-DS queries on Spark,
allowing for performance studies across different configurations
and Spark versions.

• Execute TPC-DS queries, a well-known suite of complex SQL,
representative of many OLAP environments

• Run at scale, from local mode and a few GB to cluster and 10s of
TBs

• Collect and analyze Spark performance metrics thanks to the
integration with sparkMeasure (see discussion on
sparkMeasure).

6

TPCDS_PySpark – getting started

7

• Run this getting-started example from the command line:

Install the tool and dependencies

pip install pyspark

pip install sparkmeasure

pip install tpcds_pyspark

Download the test data

wget

https://sparkdltrigger.web.cern.ch/sparkdltrigger/TPCDS/tpcds_10.zip

unzip -q tpcds_10.zip

1. Run the tool for a minimal test

tpcds_pyspark_run.py -d tpcds_10 -n 1 -r 1 --queries q1,q2

2. run all queries with default options

tpcds_pyspark_run.py -d tpcds_10

2. Explore: WebUI
• Spark WebUI is the official Spark instrumentation a

starting point for performance investigations. Use it to

explore the SQL, jobs, and configurations while the

workload is running.

• https://spark.apache.org/docs/latest/web-ui.html

8

https://spark.apache.org/docs/latest/web-ui.html

3. Detailed Analysis with

sparkMeasure
• For a more detailed analysis, integrate SparkMeasure into your

applications

• This tool is invaluable for identifying performance bottlenecks,

understanding resource utilization, and comparing different Spark

configurations or code changes.

• Modes of operation

• Interactive use, analyze the metrics as you go. Use it with Notebooks or CLI.

• Batch mode for post-execution analysis. Use it to instrument your code

and/or use it for CI/CD jobs.

• Flight-recorder mode: collect metrics without any code change.

9

SparkMeasure – getting started

10

• Run these getting started examples from the command line:

Scala CLI

spark-shell --packages ch.cern.sparkmeasure:spark-measure_2.12:0.24

val stageMetrics = ch.cern.sparkmeasure.StageMetrics(spark)

stageMetrics.runAndMeasure(spark.sql("select count(*) from range(1000)

cross join range(1000) cross join range(1000)").show())

Python CLI

pip install pyspark

pip install sparkmeasure

pyspark --packages ch.cern.sparkmeasure:spark-measure_2.12:0.24

from sparkmeasure import StageMetrics

stagemetrics = StageMetrics(spark)

stagemetrics.runandmeasure(globals(), 'spark.sql("select count(*) from

range(1000) cross join range(1000) cross join range(1000)").show()')

SparkMeasures’ architecture

11

4. Monitor execution with Spark-

Dashboard
• Use Spark-Dashboard to monitor the Spark jobs execution in real

time.

• This involves collecting metrics from your Spark jobs and visualizing

them with a Grafana dashboard.

• The dashboard displays metric related to CPU usage, I/O,

Shuffle, Memory usage.

• Time-series to follow the evolution and find bottlenecks

• The setup process is straightforward, thanks to pre-configured

Docker container images.

12

Spark-Dashboard’s architecture

13

Spark-Dashboard – getting started

14

1. Start the container image

docker run -p 3000:3000 -p 2003:2003 -d lucacanali/spark-dashboard

2. Run Spark

bin/spark-shell (or spark-submit or pyspark)

--conf "spark.metrics.conf.*.sink.graphite.class"="org.apache.spark.metrics.sink.GraphiteSink" \

--conf "spark.metrics.conf.*.sink.graphite.host"="localhost" \

--conf "spark.metrics.conf.*.sink.graphite.port"=2003 \

--conf "spark.metrics.conf.*.sink.graphite.period"=10 \

--conf "spark.metrics.conf.*.sink.graphite.unit"=seconds \

--conf "spark.metrics.conf.*.sink.graphite.prefix"="lucatest" \

--conf "spark.metrics.conf.*.source.jvm.class"="org.apache.spark.metrics.source.JvmSource" \

--conf "spark.metrics.staticSources.enabled"=true \

--conf "spark.metrics.appStatusSource.enabled"=true

3. Go to the dashboard: http://localhost:3000

Example Dashboard

15

Partial view of

the dashboard

Tutorials and Demos
Demos and tutorials of the tools for a Spark Performance Lab.

• SparkMeasure - metrics collection

• Watch the video sparkMeasure's getting started demo and tutorial

• TPCDS_PySpark - workload generator

• Watch the video Watch TPCDS-PySpark demo and tutorial

• Spark-Dashboard - real-time dashboards

• Watch the video Spark-Dashboard demo and tutorial

16

https://www.youtube.com/watch?v=NEA1kkFcZWs
https://www.youtube.com/watch?v=1EjLCamuRl0
https://www.youtube.com/watch?v=sLjAyDwpg80
https://www.youtube.com/watch?v=NEA1kkFcZWs
https://www.youtube.com/watch?v=1EjLCamuRl0
https://www.youtube.com/watch?v=sLjAyDwpg80

Metrics Drill Down
• Metrics provide insights

• They take us beyond simple timing, revealing details about
task execution, resource utilization, and bottlenecks.

• Execution Time is Not Enough
• Measuring the execution time of a job is useful but it doesn’t

show the whole picture.

• Say the job ran in 10 seconds. It's crucial to understand why it
took 10 seconds instead of 100 seconds or just 1 second.
What was slowing things down? Was it the CPU, data
input/output, or something else, like data shuffling?

• This helps us identify the root causes of performance issues.

17

Make the Best of Spark Metrics
Documentation: Spark Task Metrics docs

Key Metrics to Collect and Monitor:

• Executor Run Time: Total time executors spend processing tasks.

• Executor CPU Time: Direct CPU time consumed by tasks.

• JVM GC Time: Time spent in garbage collection, affecting
performance.

• Shuffle and I/O Metrics: Critical for understanding data movement
and disk interactions.

• Memory Metrics: Key for performance and troubleshooting Out Of
Memory errors

18

https://spark.apache.org/docs/latest/monitoring.html

Metric Analysis, What to Look For
• Look for bottlenecks:

• Are there resources that are the bottleneck? Are the jobs
running mostly on CPU or waiting for I/O or Garbage
Collection, or..?

• USE method:
• Utilization Saturation and Errors (USE) Method

• It is a methodology for analyzing the performance of any
system.

• The tools described here can help you to measure and
understand Utilization and Saturation.

19

https://www.brendangregg.com/usemethod.html

Cluster CPU Utilization
• Are you getting all allocated cores to work for you?

• Check the number of active tasks vs. time

• Figure: during TPCDS 10TB on a YARN cluster with 256 cores

• Spikes and troughs. Drill down on root cause:

• Resource allocation, partition skew, straggler tasks, stage boundaries, etc

20

Which Tools Should I Use?
• Start with using the Spark Web UI

• Instrument your jobs with sparkMesure.

• This is recommended early in the application development, testing, and
for Continuous Integration (CI) pipelines.

• Observe your Spark application execution with Spark-Dashboard

• Use OS-tools

• See also Spark-Dashboard extended instrumentation: it collects and
visualizes OS metrics (from cgroup statistics) like network stats, etc

• An example of “offline” Spark metrics analysis

• TPCDS run at scale 10 TB

21

https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/TPCDS_PySpark#tpcds-at-scale-10000g-and-analysis

Lessons Learned
• Collect, Analyze and Visualize Metrics: Go beyond just measuring jobs'

executions time, to troubleshoot and fine-tune Spark performance effectively.

• Use the Right Tools: Familiarize yourself with tools for performance

measurement and monitoring.

• Start Small, Scale Up: Begin with smaller datasets and configurations, then

gradually scale to test larger, more complex scenarios.

• Tuning is an Iterative Process: Experiment with different configurations,

parallelism levels, and data partitioning strategies to find the best setup for

your workload.

22

Conclusions
• Establishing a Spark Performance Lab is a fundamental step for any

developer and data engineer aiming to master Spark's performance.

• By integrating tools like Web UI, TPCDS_PySpark, sparkMeasure, and

Spark-Dashboard, developers and data engineers can gain unprecedented

insights into Spark operations and optimizations.

• Learn by doing and experimentation!

23

Resources
• Blog: Building an Apache Spark Performance Lab: Tools and

Techniques for Spark Optimization

• TPCDS_PySpark

• SparkMeasure

• Spark-Dashboard and Dashboard Notes

• Flame Graphs for Spark and Grafana Pyroscope with Spark

• Tools for OS performance monitoring

Acknowledgements: the teams behind the CERN data analytics,
monitoring, and web notebook services, as well as the members of the
ATLAS database group.

24

https://db-blog.web.cern.ch/node/195
https://db-blog.web.cern.ch/node/195
https://github.com/LucaCanali/Miscellaneous/tree/master/Performance_Testing/TPCDS_PySpark
https://github.com/LucaCanali/sparkMeasure
https://github.com/cerndb/spark-dashboard
https://github.com/LucaCanali/Miscellaneous/tree/master/Spark_Dashboard
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Linux_FlameGraph.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Spark_Pyroscope_FlameGraph.md
https://github.com/LucaCanali/Miscellaneous/blob/master/Spark_Notes/Tools_Linux_OS_CPU_Disk_Network.md

	Slide 1
	Slide 2: About Luca
	Slide 3: Motivations and Scope
	Slide 4: Build a Lab!
	Slide 5: Tools
	Slide 6: 1. Workload Generation
	Slide 7: TPCDS_PySpark – getting started
	Slide 8: 2. Explore: WebUI
	Slide 9: 3. Detailed Analysis with sparkMeasure
	Slide 10: SparkMeasure – getting started
	Slide 11: SparkMeasures’ architecture
	Slide 12: 4. Monitor execution with Spark-Dashboard
	Slide 13: Spark-Dashboard’s architecture
	Slide 14: Spark-Dashboard – getting started
	Slide 15: Example Dashboard
	Slide 16: Tutorials and Demos
	Slide 17: Metrics Drill Down
	Slide 18: Make the Best of Spark Metrics
	Slide 19: Metric Analysis, What to Look For
	Slide 20: Cluster CPU Utilization
	Slide 21: Which Tools Should I Use?
	Slide 22: Lessons Learned
	Slide 23: Conclusions
	Slide 24: Resources

