
Big Data Tools and Pipelines for Machine Learning in HEP

CERN-EP/IT Data Science Seminar
December 4th, 2019
Luca Canali, Hadoop and Spark Service, IT-DB, CERN

1

Why “Big Data” Ecosystem for HEP?

• Platforms, tools and R&D
• Large amounts of innovation by open source

communities, industry, academia
• Address key challenges for data intensive domains
• Lower cost of development and licensing

• Use of mainstream technologies (Data, ML/AI)
• Create opportunities for collaboration

• With other sciences (astronomy, biology, etc) + with industry

• Talent flow: job market for data scientists and data
engineers

2
2

Data Engineering to Enable Effective ML

• From “Hidden Technical Debt in Machine Learning

Systems”, D. Sculley at al. (Google), paper at NIPS 2015

3

Use Case: End-to-End ML Pipeline

Particles Classifier Using Neural Networks

1
63%

2
36%

3
1%

Particle

Classifier

W + j

QCD

t-t̅

• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Identify events of interest for physics and reduce false positives

• False positives have a cost, as wasted storage bandwidth and computing

• “Topology classification with deep learning to improve real-time event selection at the

LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12

5

R&D – Data Pipelines

• Improve the quality of filtering systems
• Reduce false positive rate

• Complement or replace rule-based algorithms with
classifiers based on Deep Learning

• Advanced analytics at the edge
• Avoid wasting resources in offline computing

• Reduction of operational costs

6

This can generate up to a petabyte of raw data per second

Reduced to GB/s by filtering in real time

Key is how to select potentially interesting events (trigger systems).

PB/s

40 million

collisions

per

second

(Raw)

100,000

selections

per

second

(L1)

TB/s

1,000

selections

per

second

(L2)

GB/s

Data Flow at LHC Experiments

7

Deep Learning Pipeline for Physics Data

Data

Ingestion

Feature

Preparation

Model

Development
Training

Read physics

data and

feature

engineering

Prepare

input for

Deep

Learning

network

1. Specify model

topology

2. Tune model

topology on

small dataset

Train the best

model

Technology: the pipeline uses Apache Spark + Analytics Zoo and

TensorFlow/Keras. Code on Python Notebooks.

8

CERN SWAN with Apache Spark,

a Data Analysis Platform at Scale

HEP software

Experiments storage

HDFS

Personal storage

Integrating new “Big Data”

components with existing

infrastructure:

• Software distribution

• Data platforms

9

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwj0r7aN3dThAhWCbVAKHb1hCsIQjRx6BAgBEAQ&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F538540%2Fcontributions%2F2187138%2Fattachments%2F1282513%2F1906054%2FIT-cernbox-2016-05-31.pdf&psig=AOvVaw2pMudr8fBzgEOu2GjfcgVp&ust=1555508026791340
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiutqHg3dThAhUCPFAKHVErDuQQjRx6BAgBEAU&url=https%3A%2F%2Findico.cern.ch%2Fevent%2F656157%2F&psig=AOvVaw3qNP_2iQRsdOTIFWOKfk_F&ust=1555508199266077

Text

Code

Monitoring

Visualizations

10

Spark Clusters at CERN: on Hadoop

and on Cloud
• Clusters run on

• Hadoop clusters: Spark on YARN

• Cloud: Spark on Kubernetes

• Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for

Accelerator Logging

(part of LHC

infrastructure)

Hadoop - YARN – 32 nodes

(Cores - 1024, Mem - 16 TB, Storage – 7.5 PB)

General Purpose

(Analytix +

Hadalytic)

Hadoop - YARN, 54 nodes

(Cores – 1184, Mem – 21 TB, Storage – 11 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)

11

Extending Spark to Read Physics Data

• Physics data

• Currently: >300 PBs of Physics data, increasing ~90 PB/year

• Stored in the CERN EOS storage system in ROOT Format and

accessible via XRootD protocol

• Integration with Spark ecosystem

• Hadoop-XRootD connector, HDFS compatible filesystem

• Spark Datasource for ROOT format

JNI

Hadoop

HDFS

APIHadoop-

XRootD

Connector

EOS

Storage

Service XRootD

Client

C++ Java

https://github.com/cerndb/hadoop-xrootd

https://github.com/diana-hep/spark-root

12

https://github.com/cerndb/hadoop-xrootd
https://github.com/diana-hep/spark-root

Labeled Data for Training and Test

● Simulated events

● Software simulators are used to generate events

and calculate the detector response

● Raw data contains arrays of simulated particles

and their properties, stored in ROOT format

● 54 million events

13

Step 1: Data Ingestion

• Read input files: 4.5 TB from ROOT format

• Feature engineering

• Python and PySpark code, using Jupyter notebooks

• Write output in Parquet format

Output:

• 25 M events

• 950 GB in Parquet format

• Target storage (HDFS or EOS)

Input:

• 54 M events

~4.5 TB

• Physics data

storage (EOS)

• Physics data

format (ROOT)

14

Spark DataFrames – Some Basics

• Data in Apache Spark
• The key abstraction and API is DataFrame

• Think of it as “a distributed version of Pandas DF”

• Can parallelize/distribute I/O and operations
• Large choice of data formats for input and output (extendable)

• Can do I/O with HDFS, EOS, S3, local filesystem, …

• Scale out: actions operate in parallel with data partition granularity,
run on cluster resources of choice (YARN, K8S, local machine)

• myDF = spark.read.format("root").load("root://eos….")

• myDF.count()

15

● Filtering

● Multiple filters, keep only events of interest

● Example: “events with one electrons or muon with Pt > 23 Gev”

• Prepare “Low Level Features”

• Every event is associated to a matrix of particles and features (801x19)

• High Level Features (HLF)

• Additional 14 features are computed from low level particle features

• Calculated based on domain-specific knowledge using Python code

Feature Engineering

16

Features are converted to formats
suitable for training

• One Hot Encoding of categories

• MinMax scaler for High Level Features

• Sorting Low Level Features: prepare input
for the sequence classifier, using a metric
based on physics. This use a Python UDF.

• Undersampling: use the same number of
events for each of the three categories

Result
• 3.6 Million events, 317 GB

• Shuffled and split into training and test
datasets

• Code: in a Jupyter notebook using
PySpark with Spark SQL and ML

Step 2: Feature Preparation

17

Performance - Lessons Learned

• Data preparation is CPU bound

• Heavy serialization-deserialization due to Python UDF

• Ran using 400 cores: data ingestion took ~3 hours

• It can be optimized, but is it worth it ?

• Use Spark SQL, or Scala instead of Python UDF

• Optimization: replaced parts of Python UDF code with Spark SQL

and higher order functions: run time, from 3 hours to 2 hours

18

Development Practices

• Development, start small

• Use a subset of data for development

• Use SWAN or a local laptop/desktop

• Run at scale on clusters

• Same code runs at scale on clusters: YARN, K8S

• Smooth transition, need for some additional config (e.g.

memory)

• API and code lifecycle

• Spark DataFrame API is stable and popular

• Improve collaboration with different teams, reproducibility,

maintainability 19

Neural Network Models

1. Fully connected feed-forward deep neural
network
• Trained using High Level Features (~1 GB of data)

2. Neural network based on Gated Recurrent
Unit (GRU)
• Trained using Low Level Features (~ 300 GB of

data)

3. Inclusive classifier model
• Combination of (1) + (2)

More complexity,

Better classifier

Performance

20

Hyper-Parameter Tuning– DNN

• Hyper-parameter tuning of the DNN model

• Trained with a subset of the data (cached in memory)

• Parallelized with Spark, using spark_sklearn.grid_search

• And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn

21

Deep Learning at Scale with Spark

• Investigations and constraints for our exercise

• How to run deep learning in a Spark data pipeline?

• Neural network models written using Keras API

• Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)

• Distributed deep learning

• GRU-based model is complex

• Slow to train on a single commodity (CPU) server

22

Spark, Analytics Zoo and BigDL

• Apache Spark
• Leading tool and API for data processing at scale

• Analytics Zoo is a platform for unified analytics
and AI
• Runs on Apache Spark leveraging BigDL / Tensorflow

• For service developers: integration with infrastructure
(hardware, data access, operations)

• For users: Keras APIs to run user models, integration
with Spark data structures and pipelines

• BigDL is an open source distributed deep learning
framework for Apache Spark

23

BigDL Runs as Standard Spark Programs

Spark

Program

DL App on Driver

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

Standard
Spark jobs

Worker

Worker Worker

Worker

Spark

Executor

(JVM)

Spark

Task
BigDL lib

Worker

Intel MKL

BigDL

library
Spark

jobs

BigDL Program

Standard Spark jobs

• No changes to the Spark or Hadoop clusters needed

Iterative

• Each iteration of the training runs as a Spark job

Data parallel

• Each Spark task runs the same model on a subset of the data (batch)

Source: Intel BigDL Team

BigDL Parameter Synchronization

Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md

25

Model Development – DNN for HLF

• Model is instantiated using the Keras-

compatible API provided by Analytics Zoo

26

Model Development – GRU + HLF
A more complex network topology, combining a GRU of Low Level Feature + a

DNN of High Level Features

27

Distributed Training
Instantiate the estimator using Analytics Zoo / BigDL

The actual training is distributed to Spark executors

Storing the model for later use

28

Analytics Zoo/BigDL on Spark scales up in the ranges tested

Performance and Scalability of Analytics Zoo/BigDL

Inclusive classifier model DNN model, HLF features

29

Workload Characterization

• Training with Analytics zoo

• GRU-based model: Distributed training on YARN cluster

• Measure with Spark Dashboard: it is CPU bound

30

Results – Model Performance

• Trained models with

Analytics Zoo and BigDL

• Met the expected results

for model performance:

ROC curve and AUC

31

Spark + TensorFlow

• Additional tests on different architecture

• Data preparation ->

• Exchange data with TFRecord format

• Distributed DL ->

32

Training with TensorFlow 2.0
• Training and test data

• Converted from Parquet to TFRecord format using Spark

• TensorFlow: data ingestion using tf.data and tf.io

• Distributed training with tf.distribute + tool for K8S: https://github.com/cerndb/tf-spawner

Distributed training with TensorFlow

2.0 on Kubernetes (CERN cloud)

TF 2.0 feature:
tf.distribute.experimental.

MultiWorkerMirroredStrategy

33

https://github.com/cerndb/tf-spawner

Performance and Lessons Learned
• Measured distributed training elapsed time

• From a few hours to 11 hours, depending on model, number of epochs and batch

size. Hard to compare different methods and solutions (many parameters)

• Distributed training with BigDL and Analytics Zoo

• Integrates very well with Spark

• Need to cache data in memory

• Noisy clusters with stragglers can add latency to parameter synchronization

• TensorFlow 2.0

• It is straightforward to distribute training on CPUs and GPUs with tf.distribute

• Data flow: Use TFRecord format, read with TensorFlow’s tf.data and tf.io

• GRU training performance on GPU: 10x speedup in TF 2.0

• Training of the Inclusive Classifier on a single P100 in 5 hours 34

Data and

models from

Research

Input:

labeled

data and

DL models

Feature

engineering

at scale

Distributed

model training

Output: particle

selector model
Hyperparameter

optimization

(Random/Grid

search)

Recap: our Deep Learning Pipeline

35

Model Serving and Future Work

• Using Apache Kafka

and Spark?

• FPGA serving DNN models

MODEL

Streaming

platform

MODEL

RTL

translation

FPGA
Output

pipeline:

to storage

/ further

online

analysis

Output

pipeline

36

End-To-End ML Pipeline Summary
• Spark, Python notebooks

• Provide well-known APIs and productive environment for data preparation

• Data preparation performance, lessons learned:

• Use Spark SQL/DataFrame API, avoid Python UDF when possible

• Successfully scaled Deep Learning on Spark clusters

• Using Analytics Zoo and BigDL

• Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud

• Good results also with Tensorflow 2.0, running on Kubernetes

• GPU resources are important for DL

• We have only explored some of the available solutions

• Data preparation and scalable + distributed training are key
37

Services and Resources

38

Users of Big Data Platforms
• Many use cases at CERN for analytics

• Data analysis, dashboards, plots, joining and aggregating multiple data, libraries for
specialized processing, machine learning, …

• Communities
• Physics:

• Analytics on computing data (e.g. studies of popularity, grid jobs, file transfers, etc) (CMS Spark
project, ATLAS Rucio)

• Parallel processing of ROOT RDataframes with PyRDF for data analysis

• Development of new ways to process Physics data, e.g.: data reduction and analysis with
spark-ROOT, more recently Coffea and Laurelin by LHC Bigdata project

• ATLAS EventIndex project

• IT:
• Analytics on IT monitoring data
• Computer security

• BE:
• NXCALS – next generation accelerator logging platform
• BE controls data and analytics

Hadoop and Spark Service at CERN IT

• Setup and run the infrastructure

• Support user community
• Provide consultancy

• Doc and training

• Facilitate use
• Package libraries and configuration

• Client machines + Docker clients

• Notebook service integration

• https://hadoop.web.cern.ch

• https://hadoop-user-guide.web.cern.ch

40

Hadoop service in numbers

 6 clusters

 4 production (bare-metal)

 2 QA clusters (VMs)

 140+ physical servers

 40+ virtual machines

 28+ PBs of Storage

 40+ TB of Memory

 4000+ physical cores

 HDDs and SSDs

 Data growth: ~8 TB per

day

41

CPU

42

XRootD connector for Hadoop and Spark
• A library that binds Hadoop-based file system API with XRootD native client

• Developed by CERN IT

• Allows most of components from Hadoop stack (Spark, MapReduce, Hive etc)
to read/write from EOS and CASTOR directly

• No need to copy the data to HDFS before processing

• Works with Grid certificates and Kerberos for authentication

EOS

Storage

System Xrootd

Client
JNI

Hadoop

HDFS

Spark

(analytix

)

Hadoop-

XrootD

Connector

EOS

Storage

System XrootD

Client
JNI

C++ Java

Spark as a service on a private cloud
• Under R&D since 2018, rolled out in 2019

• Appears to be a good solution when data locality is not needed
• CPU and memory intensive rather than IO intensive workloads

• Reading from storage systems via network (EOS, S3, “foreign” HDFS)

• Compute resources can be flexibly scaled out

• Spark clusters – on cloud containers
• Kubernetes on Openstack

• Spark runs on Kubernetes since version 2.3

• Use cases
• SWAN integration for users reading from EOS

• High demand of computing resources, needing to used cloud resources

• Streaming jobs (e.g. accessing Apache Kafka)

43

Spark Clusters at CERN: on Hadoop

and on Cloud
• Clusters run on

• Hadoop clusters: Spark on YARN

• Cloud: Spark on Kubernetes

• Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for

Accelerator Logging

(part of LHC

infrastructure)

Hadoop - YARN – 32 nodes

(Cores - 1024, Mem - 16 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 54 nodes

(Cores – 1184, Mem – 21 TB, Storage – 11 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)

44

SWAN – Jupyter Notebooks On Demand

• Service for web based analysis (SWAN)
• Developed at CERN, initially for physics analysis by EP-SFT

• An interactive platform that combines code, equations, text
and visualizations
• Ideal for exploration, reproducibility, collaboration

• Fully integrated with Spark and Hadoop service
• Python on Spark (PySpark) at scale
• Modern, powerful and scalable platform for data analysis
• Web-based: no need to install any software

45

Spark Integration in the SWAN Architecture

46

IT Hadoop and Spark clusters

Web portal

Container Scheduler

CERN Resources

EOS

(Data)

CERNBox

(User Files)

CVMFS

(Software)

User 1 User 2 User n...

AppMaster

Spark Worker

Python task

Python task

SSO

Spar
k

Drive
r

Example Notebooks

https://swan.web.cern.ch/content/apache-spark

47

Why Spark?
• Data processing at scale

• DataFrames, similar to Pandas

• You cannot “fit the problem on a laptop”

• Machine Learning at scale
• “scikit-learn” at scale

• Data Streaming

• One tool with many features
• Popular API

48

Image Credit: Vector Pocket Knife from Clipart.me

What Can be Improved?

• Spark runs natively on JVM
• Python integration is key at CERN. Works OK but

performance still needs to improve

• Spark is most useful at scale
• We see many ML tasks that fit in a server

• Spark and GPUs
• Work in progress. Horovod on Spark is a possibility

• Competition
• Cloud and open source tools: Kubeflow, DASK, …

49

Areas for Future Development

• Further improve the analytics platform

• Use of cloud resources, also testing public clouds

• Integration of GPUs

• Machine Learning

• Collect feedback from users communities

• Are tools at scale useful?

• What are the main use cases?

• What is missing in the platform?

50

Conclusions

• End-to-end pipeline for machine learning

• Developed with Apache Spark, BigDL and
Tensorflow, using Jupyter/Python,

• Big Data tools and platforms at CERN

• For data analysis, machine learning and streaming

• Run at scale on YARN and on Kubernetes

• Integrate with CERN computing environment

51

Acknowledgments and Links
• Matteo Migliorini, Marco Zanetti, Riccardo Castellotti, Michał Bień, Viktor

Khristenko, Maria Girone, CERN openlab, CERN Spark and Hadoop service

• Authors of “Topology classification with deep learning to improve real-time

event selection at the LHC”, notably Thong Nguyen, Maurizio Pierini

• Intel team for BigDL and Analytics Zoo: Jiao (Jennie) Wang, Sajan Govindan

ML Pipeline:

• Data and code: https://github.com/cerndb/SparkDLTrigger

• Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics

http://arxiv.org/abs/1909.10389

CERN Spark and Hadoop Service:

• https://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/access.html

• Spark on SWAN: https://swan.web.cern.ch/content/apache-spark
52

https://github.com/cerndb/SparkDLTrigger
http://arxiv.org/abs/1909.10389
https://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/access.html
https://swan.web.cern.ch/content/apache-spark

