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Why “Big Data” Ecosystem for HEP?

• Platforms, tools and R&D
• Large amounts of innovation by open source 

communities, industry, academia
• Address key challenges for data intensive domains
• Lower cost of development and licensing

• Use of mainstream technologies (Data, ML/AI)
• Create opportunities for collaboration

• With other sciences (astronomy, biology, etc) + with industry

• Talent flow: job market for data scientists and data 
engineers
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Data Engineering to Enable Effective ML

• From “Hidden Technical Debt in Machine Learning 

Systems”, D. Sculley at al. (Google), paper at NIPS 2015
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Use Case: End-to-End ML Pipeline



Particles Classifier Using Neural Networks
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• R&D to improve the quality of filtering systems

• Develop a “Deep Learning classifier” to be used by the filtering system

• Goal: Identify events of interest for physics and reduce false positives 

• False positives have a cost, as wasted storage bandwidth and computing

• “Topology classification with deep learning to improve real-time event selection at the 

LHC”, Nguyen et al. Comput.Softw.Big Sci. 3 (2019) no.1, 12
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R&D – Data Pipelines

• Improve the quality of filtering systems
• Reduce false positive rate

• Complement or replace rule-based algorithms with 
classifiers based on Deep Learning 

• Advanced analytics at the edge
• Avoid wasting resources in offline computing

• Reduction of operational costs 
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This can generate up to a petabyte of raw data per second

Reduced to GB/s by filtering in real time

Key is how to select potentially interesting events (trigger systems).
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Data Flow at LHC Experiments
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Deep Learning Pipeline for Physics Data
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Technology: the pipeline uses Apache Spark + Analytics Zoo and 

TensorFlow/Keras. Code on Python Notebooks.
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CERN SWAN with Apache Spark, 

a Data Analysis Platform at Scale

HEP software

Experiments storage

HDFS

Personal storage

Integrating new “Big Data” 

components with existing 

infrastructure:

• Software distribution

• Data platforms
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Spark Clusters at CERN: on Hadoop 

and on Cloud
• Clusters run on  

• Hadoop clusters: Spark on YARN

• Cloud: Spark on Kubernetes

• Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for 

Accelerator Logging

(part of LHC 

infrastructure)

Hadoop - YARN – 32 nodes

(Cores - 1024, Mem - 16 TB, Storage – 7.5 PB)

General Purpose

(Analytix + 

Hadalytic)

Hadoop - YARN, 54 nodes

(Cores – 1184, Mem – 21 TB, Storage – 11 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)

11



Extending Spark to Read Physics Data

• Physics data 

• Currently: >300 PBs of Physics data, increasing ~90 PB/year 

• Stored in the CERN EOS storage system in ROOT Format and 

accessible via XRootD protocol

• Integration with Spark ecosystem

• Hadoop-XRootD connector, HDFS compatible filesystem

• Spark Datasource for ROOT format

JNI

Hadoop

HDFS 

APIHadoop-

XRootD

Connector

EOS

Storage

Service XRootD

Client

C++ Java

https://github.com/cerndb/hadoop-xrootd

https://github.com/diana-hep/spark-root
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Labeled Data for Training and Test

● Simulated events

● Software simulators are used to generate events 

and calculate the detector response

● Raw data contains arrays of simulated particles 

and their properties, stored in ROOT format

● 54 million events
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Step 1: Data Ingestion

• Read input files: 4.5 TB from ROOT format

• Feature engineering

• Python and PySpark code, using Jupyter notebooks

• Write output in Parquet format

Output:

• 25 M events

• 950 GB in Parquet format

• Target storage (HDFS or EOS)

Input:

• 54 M events

~4.5 TB

• Physics data 

storage (EOS)

• Physics data 

format (ROOT)
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Spark DataFrames – Some Basics

• Data in Apache Spark
• The key abstraction and API is DataFrame

• Think of it as “a distributed version of Pandas DF”

• Can parallelize/distribute I/O and operations
• Large choice of data formats for input and output (extendable)

• Can do I/O with HDFS, EOS, S3, local filesystem, …

• Scale out: actions operate in parallel with data partition granularity, 
run on cluster resources of choice (YARN, K8S, local machine)

• myDF = spark.read.format("root").load("root://eos….")

• myDF.count() 
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● Filtering

● Multiple filters, keep only events of interest

● Example: “events with one electrons or muon with Pt > 23 Gev”

• Prepare “Low Level Features”

• Every event is associated to a matrix of particles and features (801x19)

• High Level Features (HLF)

• Additional 14 features are computed from low level particle features

• Calculated based on domain-specific knowledge using Python code

Feature Engineering
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Features are converted to formats 
suitable for training

• One Hot Encoding of categories 

• MinMax scaler for High Level Features

• Sorting Low Level Features: prepare input 
for the sequence classifier, using a metric 
based on physics. This use a Python UDF.

• Undersampling: use the same number of 
events for each of the three categories

Result
• 3.6 Million events, 317 GB

• Shuffled and split into training and test 
datasets

• Code: in a Jupyter notebook using 
PySpark with Spark SQL and ML

Step 2: Feature Preparation
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Performance - Lessons Learned

• Data preparation is CPU bound 

• Heavy serialization-deserialization due to Python UDF

• Ran using 400 cores: data ingestion took ~3 hours 

• It can be optimized, but is it worth it ?

• Use Spark SQL, or Scala instead of Python UDF 

• Optimization: replaced parts of Python UDF code with Spark SQL 

and higher order functions: run time, from 3 hours to 2 hours
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Development Practices

• Development, start small

• Use a subset of data for development

• Use SWAN or a local laptop/desktop

• Run at scale on clusters

• Same code runs at scale on clusters: YARN, K8S

• Smooth transition, need for some additional config (e.g. 

memory)

• API and code lifecycle

• Spark DataFrame API is stable and popular

• Improve collaboration with different teams, reproducibility, 

maintainability 19



Neural Network Models 

1. Fully connected feed-forward deep neural 
network
• Trained using High Level Features (~1 GB of data)

2. Neural network based on Gated Recurrent 
Unit (GRU)
• Trained using Low Level Features (~ 300 GB of 

data)

3. Inclusive classifier model
• Combination of (1) + (2)

More complexity,

Better classifier 

Performance
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Hyper-Parameter Tuning– DNN 

• Hyper-parameter tuning of the DNN model

• Trained with a subset of the data (cached in memory) 

• Parallelized with Spark, using spark_sklearn.grid_search

• And scikit-learn + keras: tensorflow.keras.wrappers.scikit_learn
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Deep Learning at Scale with Spark

• Investigations and constraints for our exercise

• How to run deep learning in a Spark data pipeline?

• Neural network models written using Keras API

• Deploy on Hadoop and/or Kubernetes clusters (CPU clusters)

• Distributed deep learning

• GRU-based model is complex

• Slow to train on a single commodity (CPU) server
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Spark, Analytics Zoo and BigDL

• Apache Spark
• Leading tool and API for data processing at scale

• Analytics Zoo is a platform for unified analytics 
and AI 
• Runs on Apache Spark leveraging BigDL / Tensorflow

• For service developers: integration with infrastructure 
(hardware, data access, operations)

• For users: Keras APIs to run user models, integration 
with Spark data structures and pipelines

• BigDL is an open source distributed deep learning 
framework for Apache Spark
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BigDL Runs as Standard Spark Programs

Spark
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DL App on Driver

Spark
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Standard 
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Worker

Worker Worker

Worker
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BigDL

library
Spark 
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BigDL Program

Standard Spark jobs

• No changes to the Spark or Hadoop clusters needed

Iterative

• Each iteration of the training runs as a Spark job

Data parallel

• Each Spark task runs the same model on a subset of the data (batch)

Source: Intel BigDL Team



BigDL Parameter Synchronization

Source: https://github.com/intel-analytics/BigDL/blob/master/docs/docs/whitepaper.md
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Model Development – DNN for HLF

• Model is instantiated using the Keras-

compatible API provided by Analytics Zoo
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Model Development – GRU + HLF
A more complex network topology, combining a GRU of Low Level Feature + a 

DNN of High Level Features
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Distributed Training
Instantiate the estimator using Analytics Zoo / BigDL

The actual training is distributed to Spark executors

Storing the model for later use
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Analytics Zoo/BigDL on Spark scales up in the ranges tested

Performance and Scalability of Analytics Zoo/BigDL

Inclusive classifier model DNN model, HLF features
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Workload Characterization

• Training with Analytics zoo

• GRU-based model: Distributed training on YARN cluster

• Measure with Spark Dashboard: it is CPU bound
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Results – Model Performance

• Trained models with 

Analytics Zoo and BigDL

• Met the expected results 

for model performance: 

ROC curve and AUC
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Spark + TensorFlow

• Additional tests on different architecture

• Data preparation ->

• Exchange data with TFRecord format

• Distributed DL ->  
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Training with TensorFlow 2.0
• Training and test data 

• Converted from Parquet to TFRecord format using Spark

• TensorFlow: data ingestion using tf.data and tf.io 

• Distributed training with tf.distribute + tool for K8S: https://github.com/cerndb/tf-spawner

Distributed training with TensorFlow 

2.0 on Kubernetes (CERN cloud)

TF 2.0 feature:
tf.distribute.experimental.

MultiWorkerMirroredStrategy
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Performance and Lessons Learned
• Measured distributed training elapsed time

• From a few hours to 11 hours,  depending on model, number of epochs and batch 

size. Hard to compare different methods and solutions (many parameters)

• Distributed training with BigDL and Analytics Zoo

• Integrates very well with Spark

• Need to cache data in memory

• Noisy clusters with stragglers can add latency to parameter synchronization

• TensorFlow 2.0

• It is straightforward to distribute training on CPUs and GPUs with tf.distribute

• Data flow: Use TFRecord format, read with TensorFlow’s tf.data and tf.io

• GRU training performance on GPU: 10x speedup in TF 2.0

• Training of the Inclusive Classifier on a single P100 in 5 hours 34



Data and 

models from 

Research

Input: 
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data and 
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Recap: our Deep Learning Pipeline
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Model Serving and Future Work

• Using Apache Kafka 

and Spark?

• FPGA serving DNN models

MODEL

Streaming 

platform

MODEL

RTL 

translation

FPGA
Output 

pipeline:

to storage 

/ further 

online 

analysis

Output

pipeline
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End-To-End ML Pipeline Summary
• Spark, Python notebooks 

• Provide well-known APIs and productive environment for data preparation

• Data preparation performance, lessons learned: 

• Use Spark SQL/DataFrame API,  avoid Python UDF when possible

• Successfully scaled Deep Learning on Spark clusters 

• Using Analytics Zoo and BigDL

• Deployed on existing Intel Xeon-based servers: Hadoop clusters and cloud

• Good results also with Tensorflow 2.0, running on Kubernetes

• GPU resources are important for DL

• We have only explored some of the available solutions

• Data preparation and scalable + distributed training are key
37



Services and Resources
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Users of Big Data Platforms
• Many use cases at CERN for analytics

• Data analysis, dashboards, plots, joining and aggregating multiple data, libraries for 
specialized processing, machine learning, …

• Communities
• Physics: 

• Analytics on computing data (e.g. studies of popularity, grid jobs, file transfers, etc) (CMS Spark 
project, ATLAS Rucio)

• Parallel processing of ROOT RDataframes with PyRDF for data analysis

• Development of new ways to process Physics data, e.g.: data reduction and analysis with 
spark-ROOT, more recently Coffea and Laurelin by LHC Bigdata project

• ATLAS EventIndex project

• IT: 
• Analytics on IT monitoring data
• Computer security

• BE: 
• NXCALS – next generation accelerator logging platform
• BE controls data and analytics 



Hadoop and Spark Service at CERN IT

• Setup and run the infrastructure

• Support user community
• Provide consultancy

• Doc and training

• Facilitate use
• Package libraries and configuration

• Client machines + Docker clients

• Notebook service integration

• https://hadoop.web.cern.ch

• https://hadoop-user-guide.web.cern.ch
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Hadoop service in numbers

 6 clusters

 4 production (bare-metal)

 2 QA clusters (VMs)

 140+ physical servers

 40+ virtual machines

 28+ PBs of Storage

 40+ TB of Memory

 4000+ physical cores

 HDDs and SSDs

 Data growth: ~8 TB per 

day
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XRootD connector for Hadoop and Spark
• A library that binds Hadoop-based file system API with XRootD native client

• Developed by CERN IT

• Allows most of components from Hadoop stack (Spark, MapReduce, Hive etc) 
to read/write from EOS and CASTOR directly

• No need to copy the data to HDFS before processing

• Works with Grid certificates and Kerberos for authentication

EOS

Storage

System Xrootd

Client
JNI

Hadoop

HDFS

Spark

(analytix

)

Hadoop-

XrootD

Connector

EOS

Storage

System XrootD

Client
JNI

C++ Java



Spark as a service on a private cloud
• Under R&D since 2018, rolled out in 2019

• Appears to be a good solution when data locality is not needed
• CPU and memory intensive rather than IO intensive workloads

• Reading from storage systems via network (EOS, S3, “foreign” HDFS)

• Compute resources can be flexibly scaled out 

• Spark clusters – on cloud containers 
• Kubernetes on Openstack

• Spark runs on Kubernetes since version 2.3

• Use cases
• SWAN integration for users reading from EOS

• High demand of computing resources, needing to used cloud resources 

• Streaming jobs (e.g. accessing Apache Kafka)
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Spark Clusters at CERN: on Hadoop 

and on Cloud
• Clusters run on  

• Hadoop clusters: Spark on YARN

• Cloud: Spark on Kubernetes

• Hardware: commodity servers, continuous refresh and capacity expansion

NXCals for 

Accelerator Logging

(part of LHC 

infrastructure)

Hadoop - YARN – 32 nodes

(Cores - 1024, Mem - 16 TB, Storage – 7.5 PB)

General Purpose Hadoop - YARN, 54 nodes

(Cores – 1184, Mem – 21 TB, Storage – 11 PB)

Cloud containers Kubernetes on Openstack VMs, Cores - 250, Mem – 2 TB

Storage: remote HDFS or EOS (for physics data)
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SWAN – Jupyter Notebooks On Demand

• Service for web based analysis (SWAN)
• Developed at CERN, initially for physics analysis by EP-SFT

• An interactive platform that combines code, equations, text 
and visualizations
• Ideal for exploration, reproducibility, collaboration

• Fully integrated with Spark and Hadoop service
• Python on Spark (PySpark) at scale
• Modern, powerful and scalable platform for data analysis
• Web-based: no need to install any software
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Spark Integration in the SWAN Architecture
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Example Notebooks

https://swan.web.cern.ch/content/apache-spark
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Why Spark?
• Data processing at scale

• DataFrames, similar to Pandas

• You cannot “fit the problem on a laptop”

• Machine Learning at scale
• “scikit-learn” at scale

• Data Streaming

• One tool with many features
• Popular API
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What Can be Improved?

• Spark runs natively on JVM
• Python integration is key at CERN. Works OK but 

performance still needs to improve

• Spark is most useful at scale
• We see many ML tasks that fit in a server

• Spark and GPUs
• Work in progress. Horovod on Spark is a possibility

• Competition
• Cloud and open source tools: Kubeflow, DASK, …
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Areas for Future Development

• Further improve the analytics platform

• Use of cloud resources, also testing public clouds

• Integration of GPUs 

• Machine Learning

• Collect feedback from users communities

• Are tools at scale useful?

• What are the main use cases?

• What is missing in the platform?
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Conclusions

• End-to-end pipeline for machine learning 

• Developed with Apache Spark, BigDL and 
Tensorflow, using Jupyter/Python, 

• Big Data tools and platforms at CERN

• For data analysis, machine learning and streaming

• Run at scale on YARN and on Kubernetes

• Integrate with CERN computing environment

51



Acknowledgments and Links
• Matteo Migliorini, Marco Zanetti, Riccardo Castellotti, Michał Bień, Viktor 

Khristenko, Maria Girone, CERN openlab, CERN Spark and Hadoop service

• Authors of “Topology classification with deep learning to improve real-time 

event selection at the LHC”,  notably Thong Nguyen, Maurizio Pierini

• Intel team for BigDL and Analytics Zoo: Jiao (Jennie) Wang, Sajan Govindan

ML Pipeline:

• Data and code: https://github.com/cerndb/SparkDLTrigger

• Machine Learning Pipelines with Modern Big Data Tools for High Energy Physics 

http://arxiv.org/abs/1909.10389

CERN Spark and Hadoop Service:

• https://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/access.html

• Spark on SWAN: https://swan.web.cern.ch/content/apache-spark
52

https://github.com/cerndb/SparkDLTrigger
http://arxiv.org/abs/1909.10389
https://hadoop-user-guide.web.cern.ch/hadoop-user-guide/getstart/access.html
https://swan.web.cern.ch/content/apache-spark

