
Apache Spark 2.0 Performance

Improvements Investigated With

Flame Graphs

Luca Canali

CERN, Geneva (CH)

Speaker Intro

ÅDatabase engineer and team lead at CERN IT

ïHadoop and Spark service

ïDatabase services

ÅJoined CERN in 2005

Å16 years of experience with database services

ïPerformance, instrumentation, tools, Linux

Å @LucaCanaliDBïhttp://cern.ch/canali

CERN

Å CERN - European Laboratory for

Particle Physics

Å Founded in 1954 by 12 countries for

fundamental research in physics

Å Today 22 member states + world-wide

collaborations

Å About ~1000 MCHF yearly budget

Å 2ô300 CERN personnel, 10ô000 users

from 110 countries

Large Hadron Collider

ÅLargest and most powerful particle accelerator

LHC Physics and Data

ÅLHC physics is data- and compute- intensive

ïOct 2016: ~160 PB archive on tape at CERN

ÅCurrent rate of data acquisition: ~ 50 PB/year

ïDistributed computing effort (WLCG)

ÅComputing: utilize ~ 300K cores

ïTechnology

ÅCustom data formats, applications and frameworks: ROOT

Apache Spark @ CERN

ÅSpark is a key component of the CERN Hadoop
Service
ïThree production Hadoop/YARN clusters

ÅAggregated capacity: ~1000 cores, 3 TB RAM, 1.2 PB used space
on HDFS

ïProjects involving Spark:

ÅAnalytics for accelerator controls and logging

ÅMonitoring use cases, this includes use of Spark streaming

ÅAnalytics on aggregated logs

ÅExplorations on the use of Spark for physics analysis

A Case from Production

ÅSlow query in a relational database
ïAd-hoc report for network experts

ïQuery runs in >12 hours, CPU-bound, single-
threaded

ÅRun using Spark on a Hadoop cluster
ïData exported with Apache Sqoop to HDFS

ïThe now query runs in ~20 minutes, unchanged

ïThrow hardware to solve the problem -> cost effective

Spark 1.6 vs. Spark 2.0

ÅAdditional tests using Spark 2.0

ïThe query execution time goes down further

ÅOne order of magnitude: from 20 min to 2 min

ïHow to explain this?

ÅOptimizations in Spark 2.0 for CPU-intensive workloads

ÅWhole stage code generation, vector operations

Main Takeaways

ÅSpark SQL

ïProvides parallelism, affordable at scale

ïScale out on storage for big data volumes

ïScale out on CPU for memory-intensive queries

ïOffloading reports from RDBMS becomes attractive

ÅSpark 2.0 optimizations

ïConsiderable speedup of CPU-intensive queries

Root Cause Analysis

ÅActive benchmarking

ïRun the workload and measure it with the relevant

diagnostic tools

ïGoals: understand the bottleneck(s) and find root

causes

ïLimitations:

ÅOur tools, ability to run and understand them and time

available for analysis are limiting factors

Test Case 1/2

ÅPreparation of source data:

ïGenerate a DataFrame with 10M rows, and three columns

randomly generated

ïCache it in memory and register it as a temporary table

$ pyspark --driver-memory 2g

sqlContext.range(0, 1e7,1).registerTempTable("t0")

sqlContext.sql("select id, floor(200*rand()) bucket, floor(1000*rand())

val1, floor(10*rand()) val2 from t0").cache().registerTempTable("t1")

Test Case 2/2

ÅTest SQL:

ïComplex and resource-intensive select statement

ÅWith non-equijoin predicate and aggregations

sqlContext.sql("""

select a.bucket, sum(a.val2) tot

from t1 a, t1 b

where a.bucket=b.bucket

and a.val1+b.val1<1000

group by a.bucket order by a.bucket""").show()

Execution Plan

ÅThe execution plan:

ïFirst instrumentation point for SQL tuning

ïShows how Spark wants to execute the query

ÅMain players:

ïCatalyst, the optimizer

ïTungsten the execution engine

Execution Plan in Spark 1.6

ÅNote: Sort Merge Join and In Memory Scan

Execution Plan in Spark 2.0

ÅNote: steps marked with (*) -> Code generation

Web UI: plan

comparison

Note in Spark 2.0

steps with ñWhole

Stage CodeGenò

Additional Checks at OS Level

ÅObservation: the test workload is CPU-bound
ïOS tools confirm this

ïSpark used in local mode
ÅOne multi-threaded java process

ÅTakes all available CPU resources in the machine

ÅSpecs of the machine for testing:
ï16 cores (2 x E5-2650) and 128 GB of RAM (virtual

memory allocated ~ 16 GB)

Profiling CPU-Bound Workloads

ÅFlame graph visualization of stack profiles

ïBrain child of Brendan Gregg (Dec 2011)

ïCode: https://github.com/brendangregg/FlameGraph

ïNow very popular, available for many languages, also

for JVM

ÅShows which parts of the code are hot

ïVery useful to understand where CPU cycles are spent

JVM and Stack Profiling

ÅJstack <pid>

ïPrints java stack for all threads

ïWhat you want is a series of stack traces

ÅJava Flight Recorder

ïPart of the HotSpot JVM (requires license for prod)

ÅLinux Perf

ïStack sampling of Java and OS

Flame Graph Visualization

ÅRecipe:

ïGather multiple stack traces

ïAggregate them by sorting alphabetically by function/method name

ïVisualization using stacked colored boxes

ïLength of the box proportional to time spent there

F1 F1 F1 F1

F2 F4 F4

F3

Function F1

Function F4F2

F3

Sort and merge

stack samples into

a flame graph

Flame Graph Spark 1.6

Spark CodeGen vs. Volcano

ÅCode generation improves CPU-intensive workloads
ïReplaces loops and virtual function calls (volcano model)

with code generated for the query

ïThe use of vector operations (e.g. SIMD) also beneficial

ïCodegen is crucial for modern in-memory DBs

ÅCommercial RDBMS engines
ïTypically use the slower volcano model (with loops and

virtual function calls)

ïIn the past optimizing for I/O latency was more important,
now CPU cycles matter more

Flame Graph Spark 2.0

