Apache Spark 2.0 Performance Improvements Investigated With Flame Graphs

Luca Canali
CERN, Geneva (CH)
Speaker Intro

• Database engineer and team lead at CERN IT
 – Hadoop and Spark service
 – Database services
• Joined CERN in 2005
• 16 years of experience with database services
 – Performance, instrumentation, tools, Linux
• @LucaCanaliDB – http://cern.ch/canali
CERN

- CERN - European Laboratory for Particle Physics
- Founded in 1954 by 12 countries for fundamental research in physics
- Today 22 member states + world-wide collaborations
- About ~1000 MCHF yearly budget
- 2’300 CERN personnel, 10’000 users from 110 countries
Large Hadron Collider

- Largest and most powerful particle accelerator
LHC Physics and Data

• LHC physics is data- and compute- intensive
 – Oct 2016: ~160 PB archive on tape at CERN
 • Current rate of data acquisition: ~ 50 PB/year
 – Distributed computing effort (WLCG)
 • Computing: utilize ~ 300K cores
 – Technology
 • Custom data formats, applications and frameworks: ROOT
Apache Spark @ CERN

• Spark is a key component of the CERN Hadoop Service
 – Three production Hadoop/YARN clusters
 • Aggregated capacity: ~1000 cores, 3 TB RAM, 1.2 PB used space on HDFS
 – Projects involving Spark:
 • Analytics for accelerator controls and logging
 • Monitoring use cases, this includes use of Spark streaming
 • Analytics on aggregated logs
 • Explorations on the use of Spark for physics analysis
A Case from Production

• Slow query in a relational database
 – Ad-hoc report for network experts
 – Query runs in >12 hours, CPU-bound, single-threaded

• Run using Spark on a Hadoop cluster
 – Data exported with Apache Sqoop to HDFS
 – The now query runs in ~20 minutes, unchanged
 – Throw hardware to solve the problem -> cost effective
Spark 1.6 vs. Spark 2.0

• Additional tests using Spark 2.0
 – The query execution time goes down further
 • One order of magnitude: from 20 min to 2 min
 – How to explain this?
 • Optimizations in Spark 2.0 for CPU-intensive workloads
 • Whole stage code generation, vector operations
Main Takeaways

• Spark SQL
 – Provides parallelism, affordable at scale
 – Scale out on storage for big data volumes
 – Scale out on CPU for memory-intensive queries
 – Offloading reports from RDBMS becomes attractive

• Spark 2.0 optimizations
 – Considerable speedup of CPU-intensive queries
Root Cause Analysis

• Active benchmarking
 – Run the workload and measure it with the relevant diagnostic tools
 – Goals: understand the bottleneck(s) and find root causes
 – Limitations:
 • Our tools, ability to run and understand them and time available for analysis are limiting factors
Test Case 1/2

• Preparation of source data:
 – Generate a DataFrame with 10M rows, and three columns randomly generated
 – Cache it in memory and register it as a temporary table

$ pyspark --driver-memory 2g

sqlContext.range(0, 1e7, 1).registerTempTable("t0")

sqlContext.sql("select id, floor(200*rand()) bucket, floor(1000*rand()) val1, floor(10*rand()) val2 from t0").cache().registerTempTable("t1")
Test Case 2/2

- Test SQL:
 - Complex and resource-intensive select statement
 - With non-equijoin predicate and aggregations

```scala
sqlContext.sql(""
  select a.bucket, sum(a.val2) tot
  from t1 a, t1 b
  where a.bucket = b.bucket
    and a.val1 + b.val1 < 1000
  group by a.bucket order by a.bucket"").show()
```
Execution Plan

• The execution plan:
 – First instrumentation point for SQL tuning
 – Shows how Spark wants to execute the query

• Main players:
 – Catalyst, the optimizer
 – Tungsten the execution engine
Execution Plan in Spark 1.6

• Note: Sort Merge Join and In Memory Scan

== Physical Plan ==
TakeOrderedAndProject(limit=21, orderBy=[bucket#1L ASC], output=[bucket#1L,tot#24L])
 +- ConvertToSafe
 +- TungstenAggregate(key=[bucket#1L], functions=[(sum(val12#3L),mode=Final,isDistinct=false)], output=[bucket#1L,tot#24L])
 +- TungstenAggregate(key=[bucket#1L], functions=[(sum(val12#3L),mode=Partial,isDistinct=false)], output=[bucket#1L,sum#73L])
 +- Project [bucket#1L,val12#3L]
 +- Filter ((val1#2L + val1#26L) < 1000)
 +- SortMergeJoin [bucket#1L], [bucket#25L]
 : Sort [bucket#1L ASC], false, 0
 : +- TungstenExchange hashpartitioning(bucket#1L,200), None
 : ++ InMemoryColumnarTableScan [val1#2L,bucket#1L,val12#3L], InMemoryRelation [id#0L,bucket#1L,val1#2L,val12#3L], true, 10000, StorageLevel(true, true, false, true, 1), Project [id#0L,FLOOR((200.0 * rand(5037924750592966597)))) AS bucket#1L,FLOOR((1000.0 * rand(-2880595295392729102))) AS val11#2L,FLOOR((10.0 * rand(1555413132836852937))) AS val12#3L], None
 : ++ Sort [bucket#25 ASC], false, 0
 : +- TungstenExchange hashpartitioning(bucket#25L,200), None
 : ++ InMemoryColumnarTableScan [val11#26L,bucket#25L], InMemoryRelation [id#29L,bucket#25L,val11#26L,val12#27L], true, 10000, StorageLevel(true, true, false, true, 1), Project [id#0L,FLOOR((200.0 * rand(5037924750592966597)))) AS bucket#1L,FLOOR((1000.0 * rand(-2880595295392729102))) AS val11#2L,FLOOR((10.0 * rand(1555413132836852937))) AS val12#3L], None
Execution Plan in Spark 2.0

• Note: steps marked with (*) -> Code generation

== Physical Plan ==
TakeOrderedAndProject(limit=2l, orderBy=[bucket#4L ASC], output=[bucket#4L,tot#3L])
 + *HashAggregate(keys=[bucket#4L], functions=[sum(val2#6L)], output=[bucket#4L, tot#3L])
 + *HashAggregate(keys=[bucket#4L], functions=[partial_sum(val2#6L)], output=[bucket#4L, sum#76L])
 + *Project [bucket#4L, val2#6L]
 + *SortMergeJoin [bucket#4L], [bucket#43L], Inner, ((val1#5L + val1#44L) < 1000)
 + *Sort [bucket#4L ASC], false, 0
 + *Project [bucket#4L, val1#5L, val2#6L]
 + *Filter ((isnotnull(bucket#4L) && isnotnull(val1#5L)) && (FLOOR((200.0 * rand(-399889517868835567))) <=> bucket#4L))
 + *InMemoryTableScan [id#0L, bucket#4L, val1#5L, val2#6L]
 + *InMemoryRelation [id#0L, bucket#4L, val1#5L, val2#6L], true, 10000, StorageLevel(disk, memory, deserialized, 1 replica)
 + *Project [id#0L, FLOOR((200.0 * rand(-399889517868835567))) AS bucket#4L, FLOOR((1000.0 * rand(-5168057130057660319))) AS val1#5L, FLOOR((44967586626201584)) AS val2#6L]
 + *Range (0, 10000000, splits=32)
 + *Sort [bucket#43L ASC], false, 0
 + *Exchange hashpartitioning(bucket#43L, 200)
 + *Project [bucket#43L, FLOOR((200.0 * rand(-399889517868835567))) AS bucket#43L, FLOOR((1000.0 * rand(-5168057130057660319))) AS val1#44L]
 + *Range (0, 10000000, splits=32)
Web UI: plan comparison

Note in Spark 2.0 steps with “Whole Stage CodeGen”
Additional Checks at OS Level

• Observation: the test workload is CPU-bound
 – OS tools confirm this
 – Spark used in local mode
 • One multi-threaded java process
 • Takes all available CPU resources in the machine

• Specs of the machine for testing:
 – 16 cores (2 x E5-2650) and 128 GB of RAM (virtual memory allocated ~ 16 GB)
Profiling CPU-Bound Workloads

• **Flame graph** visualization of stack profiles
 – Brain child of Brendan Gregg (Dec 2011)
 – Code: https://github.com/brendangregg/FlameGraph
 – Now very popular, available for many languages, also for JVM

• Shows which parts of the code are hot
 – Very useful to understand where CPU cycles are spent
JVM and Stack Profiling

• Jstack <pid>
 – Prints java stack for all threads
 – What you want is a series of stack traces

• Java Flight Recorder
 – Part of the HotSpot JVM (requires license for prod)

• Linux Perf
 – Stack sampling of Java and OS
Flame Graph Visualization

• Recipe:
 – Gather multiple stack traces
 – Aggregate them by sorting alphabetically by function/method name
 – Visualization using stacked colored boxes
 – Length of the box proportional to time spent there

Sort and merge stack samples into a flame graph
Flame Graph - Spark 1.6 executing SQL with sort merge join and aggregations - 100-sec sample

Scala iterators: looping over rows of data
Spark CodeGen vs. Volcano

• Code generation improves CPU-intensive workloads
 – Replaces loops and virtual function calls (volcano model) with code generated for the query
 – The use of vector operations (e.g. SIMD) also beneficial
 – Codegen is crucial for modern in-memory DBs

• Commercial RDBMS engines
 – Typically use the slower volcano model (with loops and virtual function calls)
 – In the past optimizing for I/O latency was more important, now CPU cycles matter more
Flame Graph Spark 2.0

Flame Graph - Spark 2.0 executing SQL with sort merge join and aggregations - 100-sec sample

Whole Stage Code Generation

Generated Class + Vector operations for hash maps
How-To: Flame Graph 1/2

• Enable Java Flight Recorder
 – Extra options in spark-defaults.conf or CLI. Example:

```bash
```

• Collect data with jcmd.
 • Example, sampling for 10 sec:

```bash
$ jcmd <pid> JFR.start duration=10s filename=$PWD/myoutput.jfr
```
How-To: Flame Graph 2/2

• Process the jfr file:
 – From .jfr to merged stacks

    ```
    $ jfr-flame-graph/run.sh -f myoutput.jfr -o myoutput.txt
    ```
 – Produce the .svg file with the flame graph

    ```
    $ FlameGraph/flamegraph.pl myoutput.txt > myflamegraph.svg
    ```

• Find details in Kay Ousterhout’s article:
 – https://gist.github.com/kayousterhout/7008a8ebf2bab eedc7ce6f8723fd1bf4
Linux Perf Sampling 1/2

- Java **mixed-mode** flame graphs with Linux Perf_events
 - Profiles CPU cycles spent on JVM and outside (e.g. Kernel)
 - Additional complexity to work around Java-specific details
 - Additional options for JVM are needed
 - Issue with preserving frame pointers
 - Fixed in Java8 update 60 build 19 or higher

```
$pyspark --conf "spark.driver.extraJavaOptions"="-XX:+PreserveFramePointer" --conf "spark.executor.extraJavaOptions"="-XX:+PreserveFramePointer"
```

- Another issue is with inlined functions:
 - fixed adding option: -XX:MaxInlineSize=0
Linux Perf Sampling 2/2

• Collect stack samples with perf:

 # perf record --F 99 --g -a -p <pid> sleep 10

• Additional step: dump symbols. See
 – https://github.com/jrudolph/perf-map-agent
 – https://github.com/brendangregg/Misc/blob/master/java/jmaps

• Create flame graph from stack samples:

 $ perf script > myoutput.txt
 $./stackcollapse-perf.pl myoutput.txt | ./flamegraph.pl --color=java --hash > myoutput.svg
HProfiler

- **Hprofiler** is a home-built tool
 - *Automates* collection and aggregation of stack traces into flame graphs for distributed applications
 - Integrates with YARN to identify the processes to trace across the cluster
 - Based on Linux perf_events stack sampling

- **Experimental tool**
 - Author Joeri Hermans @ CERN
 - https://github.com/cerndb/Hadoop-Profiler
Recap on Flame Graphs

• Pros: good to understand where CPU cycles are spent
 – Useful for performance troubleshooting and internals investigations
 – Functions at the top of the graph are the ones using CPU
 – Parent methods/functions provide context

• Limitations:
 – Off-CPU and wait time not charted
 • Off-CPU flame graphs exist, but still experimental
 – Aggregation at the function/method level
 • Does not necessarily highlight the critical path in the code
 – Interpretation of flame graphs requires experience/knowledge
Further Drill Down, the Source Code

• Further drill down on the source code
 – Search on Github for the method names as found in the flame graph
 – Examples:
 • "org.apache.sql.execution.WholeStageCodegenExec"
 • "org.apache.spark.sql.executio.aggregate.VectorizedHashMapGenerator.scala"
Linux Perf Stat

• Perf stat counters to further understand
 – Access to memory is key
 – Much higher memory throughput in Spark 2.0 vs 1.6
 • See LLC-LOAD, LLC-load-misses

```shell
```
Conclusions

• Apache Spark
 – **Scalability** and performance on commodity HW
 – For I/O intensive and compute-intensive queries
 – Spark SQL useful for **offloading** queries from RDBMS

• Spark 2.0, **code generation** and vector operations
 – Important improvements for CPU-bound workloads
 – **Speedup** close to one order of magnitude
 • Spark 2.0 vs. Spark 1.6 for the tested workload
 – Diagnostic tools and instrumentation are important:
 • Execution plans, Linux perf events, **flame graphs**
Acknowledgements and Links

• This work has been made possible thanks to the colleagues at CERN IT and Hadoop service
 – In particular Zbigniew Baranowski and Joeri Hermans
 – See also blog - http://db-blog.web.cern.ch/

• Brendan Gregg – Resources on flame graphs:
 – http://www.brendangregg.com/flamegraphs.html
THANK YOU.

Contact: Luca.Canali@cern.ch